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Chapter 1

Amortized Analysis

1.1 Introduction

Definition: Amortized Analysis

Average of the total time required to perform a sequence of data-structure operations
over all operations performed.
Amortized analysis is a worst-case analysis.

Types of Amortized Analysis

1. Aggregate Analysis: Upper bound T (n) on total cost of sequence of n operations.
Amortized complexity is T (n)/n.

2. Accounting Method: Assign certain charges to each operation. If the operation is
cheaper than the charge, then build up credit to use later.

3. Potential Method: A potential energy of a data structure, which maps each state of
the entire data structure to R (potential). Assign credit to the whole data structure
instead of each operation in accounting method.

Problem
Input: A binary counter C initially set to 0.
Output: Increment this counter up to n.
Question: How many bit operations will it take to increment C from 0 to n?

Aggregate Analysis: The worst-case time per operation is log n. So an upper bound is
O(n log n).

The most significant bits get updated very infrequently. Flip the kth bit after 2k−1 opera-
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tions/increments.

# bit flips =
⌈log n⌉∑

k=0

⌊
n

2k

⌋
<
∑
k≥0

n

2k
= 2n

The total time is Θ(n). This implies that the amortized cost per operation is Θ(1).

Accounting Method: Suppose the actual cost of each operation of an algorithm is ci. In
each step of the algorithm, we assign charges γi to each operation such that

l∑
i=1

γi ≥
l∑

i=1
ci

for any l ≥ 1. That is, the total charged up to step l is greater than or equal to the actual
cost of all operations up to that point.

Suppose we charge the cost of clearing a bit (1 → 0) to the operation that sets the bit to
1 in the first place. If we flip k bits during an increment, we have already charged k − 1 of
those bit flips to earlier bit flips. Note that if we flip k bits, we must set k − 1 of these bits
to 0, so that it carries over.

So instead of paying for k bit flips, we charge at most 2: one for setting a bit to 1 and the
other is to clear this bit.

So then total cost ≤ total charged = 2n.

Potential Method: Suppose the actual cost of each operation of our algorithm is ci. Assign
potential Φi to data structure at time i. Amortized cost of ith operation is

γi = ci + Φi − Φi−1

That is, total amortized cost is the actual cost of the operation plus the change in potential.
We have

n∑
i=1

γi =
n∑

i=1
(ci + Φi − Φi−1) = Φn − Φ0 +

n∑
i=1

ci

So if Φk − Φ0 ≥ 0 for all k ≥ 0, the total amortized cost is an upper bound on total cost.

Potential: Φi = number of bits with value 1 at step i for i ≥ 0. Now for every k ≥ 0,
Φk ≥ Φ0 = 0.

ci = (# bits 0→ 1) + (# bits 1→ 0).
Φi − Φi−1 = (# bits 0→ 1) − (# bits 1→ 0).

Amortized cost:
γi = ci + Φi − Φi−1 = 2× (# bits 0→ 1) = 2

since each increment only changes 1 bit from 0 to 1, each amortized cost is 2. So,
n∑

i=1
ci + Φn − Φ0 =

n∑
i=1

γi =
n∑

i=1
2 = 2n
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1.2 Splay Trees

Data structures with great amortized running time are great for internal processes, such as
internal graph algorithms (e.g. MST). It is bad when you have client-server model, as in this
setting, one wants to minimize worst-case per query.

Definition: Splay Trees

Self-adjusting binary search trees.

Theorem (Sleator & Tarjan 1985)

Splay trees have Θ(log n) amortized cost per operation., Θ(n) worst-case time.

Does not keep any balancing information. Adjust the tree whenever a node is accessed.

Definition: Splaying

Move the node that was searched to the root.

Notation
n ← number of elements, m ← number of operations = searches + insertions +
deletions.
Operations: SEARCH(k), INSERT (k), DELETE(k)

1.2.1 Splay Operations

Definition: Splay Operation

SPLAY (k)
Input: element k
Output: rebalancing of binary search tree

Definition: Zig-Zag Condition

parent(k) has k as left/right-child and parent(parent(k)) has parent(k) as right/left-
child.

Definition: Zig-Zig Condition

parent(k) has k as left/right-child and parent(parent(k)) has parent(k) as left/right-
child.

Only apply zig rotation when there is no grandparent of the node we are rotating.

10



Algorithm 1 SPLAY (k)
1: while k is not root do
2: if k satisfies zig-zag condition then
3: zig-zag rotation
4: if k satisfies zig-zig condition then
5: zig-zig rotation
6: if k is a child of root then
7: zig rotation (normal)

1.2.2 Splay Tree Algorithm

SEARCH(k): after searching for k, if k in the tree, do SPLAY (k). If k is not in the tree,
then perform SPLAY (k′) where k′ is the last key that was compared to k when searching.

INSERT (k): standard insert operation, then do SPLAY (k)

DELETE(k): standard delete operation, then SPLAY (parent(k))

• delete first (moves k to the bottom of tree) by finding successor

• then delete k as in the cases where k has at most one child

• then we splay the parent of k (after placing k at the bottom)

Intuition: zig-zag and zig-zig make a lot of progress in unbalanced trees. If the tree is
balanced, then splaying is quite fast.

1.2.3 Analysis

Potential Method: The charge ĉi of the ith operation with respect to the potential function
Φ is:

ĉi := ci + Φ(Di)− Φ(Di−1)
The amortized cost of all operations is

m∑
i=1

ĉi =
m∑

i=1
ci + Φ(Di)− Φ(Di−1)

= Φ(Dm)− Φ(D0) +
m∑

i=1
ci ≥

m∑
i=1

ci

So long as Φ(Dm) ≥ Φ(D0), then amortized charge is an upper bound on amortized cost.
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Definition: Potential Function of Splay Tree

• δ(k) := number of descendants of k (including k)

• rank(k) := log(δ(k))

•
Φ(T ) =

∑
k∈T

rank(k)

The minimum potential is with a perfectly balanced tree. The root has rank log n, any node
in second level has rank log n

2 , and so forth. So

Φ(T ) =
log n∑
h=1

h · n2h
= Θ(n)

Analysis - Splay Operation: Let rank(k) be the current rank of k and rank′(k) be the
new rank of k after we perform a rotation on k.

Lemma (Amortized Cost from SPLAY Subroutines)

The charge γ of an operation (zig, zig-zig, zig-zag) is bounded by:

γ ≤

3(rank′(k)− rank(k)) for zig-zig, zig-zag
3(rank′(k)− rank(k)) + 1 for zig

Proof. Let T ′ be the tree after rotation.

We begin by analyzing the zig rotation. Let k be the node we rotating, b = parent(k). Then,
rank′(k) = rank(b). The charge in this case is given by

γ = cost + Φ(T ′)− Φ(T )
= 1 + rank′(k) + rank(b)− rank(k)− rank(b)
= 1 + rank′(b)− rank(k)
≤ 1 + rank′(k)− rank(k)
≤ 1 + 3(rank′(k)− rank(k))

where rank′(b) ≤ rank′(k) since b is a child of k in T ′.

Analyzing the zig-zag rotation. Let k be the node we are rotating, b = parent(k), and a =
parent(b). Then, rank′(k) = rank(a), rank′(b) ≤ rank′(k), and rank(k) ≤ rank(b) ≤ rank(a).
Moreover, δ′(k) ≥ δ′(a) + δ(k). The charge in this case is given by

γ = cost + Φ(T ′)− Φ(T )
= 2 + rank′(a) + rank′(b) + rank′(k)− rank(a)− rank(b)− rank(k)
= 2 + rank′(a) + rank′(b)− rank(b)− rank(k)
≤ 2 + rank′(a) + rank′(k)− 2 · rank(k)
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Now since δ′(k) ≥ δ′(a) + δ(k), by concavity of log, we have

log
(
δ′(a)
δ′(k)

)
+ log

(
δ(k)
δ′(k)

)
≤ −2 =⇒ log δ′(a) + log δ(k) ≤ 2 log δ′(k)− 2

Equivalently, we have rank′(a) ≤ 2 · rank′(k)− rank(k)− 2. Thus, we have

γ ≤ 2 + rank′(a) + rank′(k)− 2 · rank(k) ≤ 3(rank′(k)− rank(k))

The proof for zig-zig is similar to zig-zag.

Lemma (Total Amortized Cost of SPLAY (k))

Let T be our current tree, with root t and k be a node in this tree. The charge Γ of
the SPLAY (k) operation is bounded by:

Γ ≤ 3(rank(t)− rank(k)) + 1 ≤ 3 rank(t) + 1 = O(log n)

Proof. Note that Γ is the sum of the charges of the basic rotations performed during the
SPLAY (k) operation. Let γi be the charge of the ith rotation, and ranki(k) be the rank of
k after the ith rotation. Then, we have rank0(k) = rank(k), rankl(k) = rank(t), where l is
the number of basic rotations performed during the SPLAY (k) operation.

There is only one zig operation so we add 1. Thus,

Γ =
l∑

i=1
γi ≤ 1 +

l∑
i=1

3(ranki(k)− ranki−1(k)) = 1 + 3(rank(t)− rank(k))

where the inequality comes from the previous lemma.

Analysis - Amortized Cost: For each of the 3 operations we have:

charge per operation = (charge of SPLAY ) + (potential change not from SPLAY )

The charge of SPLAY is O(log n) from second lemma. Charge of SPLAY already includes
the cost of the operation.

Tracking potential outside splay:

• SEARCH: only splay changes the potential

• DELETE: removing a node decreases potential

• INSERT : adding new element k increases ranks of all ancestors of k post insertion
(might be O(n) of them)

So we need to handle case 3: Let k := k0 7→ k1 7→ · · · 7→ kl where k − I is the ith ancestor
of k and kl is the root of the tree. If we denote δ′(a) as the number of descendants of a

13



post insertion, then we have δ′(k) = 1 (since before splaying, k is a leaf of the tree) and
δ′(ki) = δ(ki) + 1 for 1 ≤ i ≤ l. Hence, the change in potential is:

l∑
i=1

log
(
δ′(ki)
δ(ki)

)
=

l∑
i=1

log
(
δ(ki) + 1
δ(ki)

)
≤

n∑
i=1

log
(
i+ 1
i

)
= log(n+ 1) = O(log n)

Thus, the amortized cost of each operation is O(log n), since we upper bounded each of the 3
quantities (charge of splay, cost of operation, potential change not from splay) by O(log n).

To show our potential function is valid, the initial potential is 0 for the empty tree and the
potential is always nonnegative (sum of logarithms).

Dynamic Optimality Conjecture (Sleator & Tarjan 1985)

Splay trees are optimal within a constant in a very strong sense:
Given a sequence of items to search for a1, . . . , am, let OPT be the minimum cost of
doing these searches + any rotations you like on the binary search tree.
You can charge 1 for following tree pointer (parent→ child or child→ parent), charge
1 per rotation.
Conjecture: Cost of splay tree is O(OPT ).
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Chapter 2

Concentration Inequalities

When evaluating the performance of randomized algorithms, we want to not only analyze
the expected runtimes, but also if the algorithm runs in time close to its expected runtime
most of the time.

A small runtime with high probability is better than small expected runtime.

2.1 Markov’s Inequality

Theorem (Markov’s Inequality)

Let X be a nonnegative discrete random variable. Then

P [X ≥ t] ≤ E[X]
t

, ∀t > 0

Proof.

E[X] =
∑
n≥0

P [X = n] · n

=
t−1∑
n=0

P [X = n] · n+
∑
n≥t

P [X = n] · n

≥ 0 + t ·
∑
n≥t

P [X = n]

= t · P [X ≥ t]

Quicksort: The expected runtime of quicksort is 2n log n. Markov’s inequality tells us that
the runtime is at least 2cn log n with probability ≤ 1/c, for any c ≥ 1.

Coin Flipping: If we flip n fair coins, the expected number of heads is n/2. Markov’s
inequality tells that P [# heads ≥ 3n/4] ≤ 2/3.

16



Remark: Useful when there is no information beyond expected value.

2.2 Chebyshev’s Inequality

Definition: Variance

V ar[X] := E[(X − E[X])2] = E[X2]− E[X]2

Definition: Standard Deviation

σ(X) :=
√
V ar[X]

Theorem (Chebyshev’s Inequality)

Let X be a discrete random variable. Then

P [|X − E[X]| ≥ t] ≤ V ar[X]
t2

, ∀t > 0

Proof. We only know Markov’s inequality. Let Y = (X − E[X])2. Then,

Y

discrete if X discrete
≥ 0

so we can use Markov’s inequality.

P [Y ≥ t2] = P [|X − E[X]| ≥ t] ≤ E[Y ]
t2

= V ar[X]
t2

Definition: Covariance
The covariance of two random variables X, Y is defined as

Cov[X, Y ] := E[(X − E[X])(Y − E[Y ])] = E[XY ]− E[X]E[Y ]

Note that Cov[X,X] = V ar[X].
We say that X, Y are positively correlated if Cov[X, Y ] > 0 and negatively correlated
if Cov[X, Y ] < 0.

Independent random variables are uncorrelated, but uncorrelated random variables are not
necessarily independent.

Proposition

• V ar[X + Y ] = V ar[X] + V ar[Y ] + 2Cov[X, Y ]

• If X, Y are independent, then V ar[X + Y ] = V ar[X] + V ar[Y ]

17



Coin Flipping: If X be # heads in n independent unbiased flips, let us bound P [X ≥ 3n/4].

Xi =
1 if heads

0 otherwise

Then, X =
n∑

i=1
Xi and each Xi, Xj are independent.

E[Xi] = 1 · 12 + 0 · 12 = 1
2

and
V ar[Xi] = E[(Xi − E[Xi])2] = 1

2

(
1− 1

2

)2
+ 1

2

(
0− 1

2

)2
= 1

4
So by proposition,

V ar[X] =
n∑

i=1
V ar[Xi] = n

4
By Chebyshev’s inequality,

P
[
X ≥ 3n

4

]
≤ P

[∣∣∣∣X − n

2

∣∣∣∣ ≥ n

4

]
≤ n/4

(n/4)2 = 4
n

Chebyshev’s inequality is most useful when we only have information about the second
moment of X.

Definition: kth Moment

The kth moment of a random variable X is E[Xk].

Definition: kth Central Moment
The kth central moment of a random variable X is

µ
(k)
X := E[(X − E[X])k]

if it exists.

Definition: i.i.d.
Independent and identically distributed.

Definition: Law of Large Numbers

Average of i.i.d. variables is approximately the expectation of the random variables.

1
n
·

n∑
i=1

Xi ≈ E[X]

18



2.3 Chernoff Bounds

Definition: Chernoff Bounds

Give quantitative estimates of the probability that X is far from E[X] for any value

of n, when X =
n∑

i=1
Xi.

Definition: Moment Generating Function

MX(t) := E[etX ] = E

∑
k≥0

tk

k! ·X
k

 =
∑
k≥0

tkE[Xk]
k!

Theorem (Chernoff Inequality)

Let X1, . . . , Xn be independent variables such that Xi ∈ 0, 1 for all i ∈ [n]. Let

X =
n∑

i=1
Xi and µ = E[X]. Then, for δ > 0,

P [X ≥ (1 + δ)µ] ≤
[

eδ

(1 + δ)1+δ

]µ

and
P [X ≤ (1− δ)µ] ≤

[
e−δ

(1− δ)1−δ

]µ

Theorem (Chernoff Inequality - 0 < δ < 1)

Let X1, . . . , Xn be independent variables such that Xi ∈ 0, 1 for all i ∈ [n]. Let

X =
n∑

i=1
Xi and µ = E[X]. Then, for 0 < δ < 1,

P [X ≥ (1 + δ)µ] ≤ e−µδ
2/3

and
P [X ≤ (1− δ)µ] ≤ e−µδ

2/2

Proof. We will prove the first inequality. Let pi := P [Xi = 1] and thus, P [Xi = 0] = 1− pi

and µ =
n∑

i=1
pi.

Idea is to use Markov’s inequality to the random variable etX . Since the exponential function
is increasing, we have

P [X ≥ a] = P [etX ≥ eta] ≤ E[etX ]
eta

, ∀t > 0
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When we use the exponential function, we are using information about all moments of X.
The Taylor series of etX is

etX =
∑
k≥0

(tX)k

k! = 1 + tX + t2X2

2! + t3X3

3! + · · ·

If X = X1 +X2 where X1, X2 are independent, then MX(t) = MX1(t)MX2(t).

Apply Markov’s inequality to etX .

P [X ≥ (1 + δ)µ] = P [etX ≥ et(1+δ)µ] ≤ E[etX ]
et(1+δ)µ

By the above and independence of Xi’s, we have

E[etX ] =
n∏

i=1
E[etXi ] =

n∏
i=1

(pi · et + (1− pi) · 1)

Since pi · et + (1− pi) · 1 = 1 + pi · (et − 1) ≤ epi(et−1) as ex ≥ 1 + x for all x ≥ 0, we have

E[etX ]
et(1+δ)µ ≤

∏n
i=1 e

pi(et−1)

et(1+δ)µ =
(
eet−1

et(1+δ)

)µ

≤
(

eδ

(1 + δ)1+δ

)µ

where t = ln(1 + δ). The main inequality follows and the fact that eδ

(1 + δ)1+δ
≤ e−δ2/3 for

all 0 < δ < 1.

2.4 Hoeffding’s Inequality

Lemma (Hoeffding)

If Z is a random variable such that Z ∈ [a, b], then

E[et(Z−E[Z])] ≤ et2(b−a)2/8

Theorem (Hoeffding’s Inequality)

Let Xi be independent random variables, taking values in [ai, bi]. Let X =
n∑

i=1
Xi and

µ = E[X]. Then, for any l > 0

P [|X − µ| ≥ l] ≤ 2 · exp
(
− 2l2∑n

i=1(bi − ai)2

)

Proof. Similar to Chernoff’s inequality, but use Hoeffding’s lemma.
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Chapter 3

Balls and Bins

3.1 Introduction

Theorem (Union Bound)

Can be generalized to any level of intersections.

P [A ∪B ∪ C] ≤ P [A] + P [B] + P [C]

P [A ∪B ∪ C] ≥ P [A] + P [B] + P [C]− P [A ∩B]− P [A ∩ C]− P [B ∩ C]

Definition: Conditional Probability

The conditional probability of E1 given E2 is

P [E1|E2] := P [E1 ∩ E2]
P [E2]

Proposition

If E1, . . . , Ek partition out sample space, then for any event E

P [E] =
k∑

i=1
P [E|Ei] · P [Ei]︸ ︷︷ ︸

P [E∩Ei]

Theorem (Simple Bayes’ Rule)

P [E1|E2] = P [E2|E1] · P [E1]
P [E2]
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Theorem (Bayes’ Rule)

If E1, . . . , Ek partition our sample space, then for event E

P [Ei|E] = P [E ∩ Ei]
P [E] = P [E|Ei] · P [Ei]∑k

j=1 P [E|Ej] · P [Ej]

Balls and Bins
Givenm balls and n bins to throw each ball into a uniformly random bin independently.

• What is the expected number of balls in a bin?

• What is the expected number of empty bins?

• What is typically the maximum number of balls in any bin (maximum load)?

• What is the expected number of bins with k balls in them?

• For what values of m do we expect to have no empty bins? (coupon collector)

Strategy of Randomized Algorithms: Devise the randomized algorithm with good ex-
pected runtime and prove concentration of measure around expectation.

3.1.1 Expected Number of Balls in a Bin

Label the m balls 1, . . . ,m and the n bins 1, . . . , n. Let Bij be the indicator variables that
ball i was thrown into bin j.

E[# balls in bin j] = E
[

m∑
i=1

Bij

]

=
m∑

i=1
E[Bij]

=
m∑

i=1
1 · P [ball i in bin j] + 0 · (1− P [ball i in bin j])

=
m∑

i=1
P [ball i in bin j]

=
m∑

i=1

1
n

= m

n

When m = n, expect one ball per bin.
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3.1.2 Expected Number of Empty Bins

Let Ni be the indicator variable that bin i is empty after m throws.

E[# empty bins] = E
[

n∑
i=1

Ni

]

=
n∑

i=1
E[Ni]

=
n∑

i=1
P [bin i is empty]

=
n∑

i=1

(
1− 1

n

)m

= n
(

1− 1
n

)m

≈ ne−m/n
(

1− 1
n

)n

≈ e−1

When m = n, expected fraction of empty bins is 1
e
.

When m = n, the first expectation was one ball per bin while the second expectation was 1
e

fraction of empty bins. This is where concentration of probability measure tries to address.
The second expectation is actually concentrated around the mean so more typical to happen.

3.1.3 Maximum Load in a Bin

Birthday Paradox

For what value of m do we expect to see two balls in one bin?

The probability that there are no collisions after we have thrown m balls is:

1
(

1− 1
n

)(
1− 2

n

)
· · ·

(
1− m− 1

n

)
≤ e− 1

n · · · e− m−1
n ≈ e−m22n

This is ≤ 1/2 when m =
√

2n ln 2. For n = 365, this is m ≈ 22.4 for the the probability that
two people (balls) have birthday on the same date (bins) to become ≥ 1/2.

Thus, we expect to see collision when m = Θ(
√
n).

23



3.1.4 Maximum Load in a Bin when m = n

What is the probability that a particular bin has ≥ k balls in it?

P [bin x has ≥ k balls] ≤
∑

S⊆[n]
|S|=k

∏
i∈S

P [ball i in bin x]

=
∑

S⊆[n]
|S|=k

∏
i∈S

1
n

=
(
n

k

)
· 1
nk

≤
(
ne

k

)k

· 1
nk

= ek

kk

By union bound,

P [some bin has ≥ k balls] ≤
n∑

i=1
P [bin i has ≥ k balls] ≤ nek

kk
= eln n+k−k ln k

Therefore, the probability of maximum load at most k is

P [max load ≤ k] = 1− P [some bin has > k balls] ≥ 1− eln n+k−k ln k

The above probability will be large (>> 1
2) when k ln k > lnn such as setting k = 3 ln n

ln ln n
.

With high probability, the maximum load is O
(

ln n
ln ln n

)
.

3.2 Coupon Collector and Power of Two Choices

3.2.1 Coupon Collector

Coupon Collector: For what value of m do we expect to have no empty bins?
Suppose each bin is a different coupon. We can buy one coupon at random. What is the
number of coupons that we need to buy to collect all of them?

Let Xi be the number of balls thrown to get from i empty bins to i− 1 empty bins. Let X
be the number of balls thrown until we have no empty bins. Thus, X =

n∑
i=1

Xi.

Xi is a random variable that follows a geometric distribution with parameter p = i
n

(Ge-
ometric distribution is the number of trials until first success, where success probability is
p).

P [Xi = k] = p(1− p)k−1
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So the expected value of Xi where Xi takes values over N is

E[Xi] =
∑
k≥1

k · P [Xi = k] = pi

∑
k≥1

(1− p)k−1 = pi ·
1

(1− (1− p))2 = 1
p

= n

i

by the derivative of the closed form of the series. Thus,

E[X] =
n∑

i=1
E[Xi] =

n∑
i=1

n

i
= n

n∑
i=1

1
i
≈ n lnn

The n lnn bound shows up in cover time of random walks in complete graphs and the number
of edges needed in graph sparsification.

3.2.2 Power of Two Choices

We now know that when n balls are thrown into n bins, the maximum load is Θ
(

ln n
ln ln n

)
with

constant probability.

Consider if when throwing a ball in a bin, before we thrown the ball we choose two bins
uniformly at random and put the ball in the bin with few balls.

This simplification reduces maximum load to O(ln lnn).

Idea: Let the height of a bin be the number of balls in it. The process above tells us that to
get one bin height h + 1, we must have at least two bins with height h. We can bound the
number of bins with height ≥ h, as this will tell us how likely it is to get a bin with height
h+ 1.

If Nh is the number of bins with height ≥ h, then we have

P [at least one bin of height h+ 1] ≤
(
Nh

2

)
≤
(
Nh

n

)2

To bound Nh, say we only have n
4 bins with 4 items, i.e. height 4. Then, the probability of

selecting 2 such bins is ≤ 1
16 . So, we should expect only n

16 bins with height 5. Analogously,
we should expect only n

162 = n
256 = n

223 bins with height 6.

Repeating this, we should expect only n/22h−3 bins with height h. So we expect log log n
maximum height after throwing n balls.
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Chapter 4

Hashing

4.1 Hash Functions

4.1.1 Computational Model

Definition: Word RAM Model
In the word RAM model:

• All elements are integers that fit in a machine word of w bits.

• Basic operations (comparison, arithmetic, bitwise) on such words take Θ(1) time.

• Access any position in the array in Θ(1) time.

This model is relevant for problems of good enough size (so asymptotic analysis can work),
but not super huge that words do not fit in a machine word.

4.1.2 Hash Functions

Problem

Store n elements (keys) from the set U = {0, 1, . . . ,m− 1} where 2w > m >> n, in a
data structure that supports insertion, deletions, search as efficiently in runtime and
memory.

Definition: Hash Function

A function h : U → [0, n− 1], where |U | = m >> n.
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Definition: Hash Table
A data structure that consists of

• a table T with n cells [0, n− 1], each cell storing a word

• a hash function h : U → [0, n− 1]

Definition: Collision
We say that a collision happens for hash function h with inputs x, y ∈ U if x ̸= y and
h(x) = h(y).

By pigeonhole principle, it is impossible to achieve no collisions without knowing keys in
advance. We want the number of collisions to be small with high probability.

Solution: Construct a family of hash function H such that the number of collisions is small
with high probability, when we pick hash function uniformly at random from H.

Ph∈RH[h(x) = h(y)] ≤ 1
poly(n) , ∀x ̸= y ∈ U

Assumptions: keys are independent from hash function that are chosen and we do not know
the keys in advance. This can still have collisions.

4.1.3 Random Hash Functions

From all functions h : U → [0, n − 1], pick one uniformly at random. This is the same as
balls and bins.

If we have to store n keys:

• Expected number of keys in a location is 1.

• Maximum number of collisions (maximum load) in one location is O
(

log n
log log n

)
keys.

To handle collisions, we can store all keys hashed into location i by a linked list, known as
chain hashing.

We can also pick two random hash functions and use power of two choices. The collision
bound becomes O(log log n).

Question: How much time and space does it take to compute random hash functions?

Storing entire functions h : U → [0, n− 1] requires O(m log n) bits and if we only stored the
elements we saw, we would require O(n) time to evaluate h(x), since we need to decide if we
had already computed it. Thus, for random function operations (search, insert, delete) take
O(n) time at best.
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4.2 k-Wise Independence

We want something is random-like, but easy to compute/represent. Ideally, O(1) time to
compute. h is described in c logm bits. This is at most the number of bit strings of length
c logm: 2c log m = mc so poly(m) functions, as each function takes at most O(logm) bits to
describe. These are succinct functions which have random-like properties.

Definition: Full Independence

A set of random variables X1, . . . , Xn are said to be fully independent if for any subset
J ⊆ [n], they satisfy

P

[⋂
i∈J

Xi = ai

]
=
∏
i∈J

P [Xi = ai]

Definition: k-Wise Independence

A set of random variables X1, . . . , Xn are said to be k-wise independent if for any set
J ⊆ [n] such that |J | ≤ k, they satisfy

P

[⋂
i∈J

Xi = ai

]
=
∏
i∈J

P [Xi = ai]

When k = 2, k-wise independence is called pairwise independence.

Example (XOR Pairwise Independence)

Given t uniformly random bits Y1, . . . , Yt, we can generate 2t−1 pairwise independent
random variables as follows:

XS :=
⊕
i∈S

Yi, S ⊆ [t] \ ∅

Example (Pairwise Independence in Fp)

Let p be a prime number. Given two uniformly random variables Y1, Y2 ∼ [0, . . . , p−1],
generate p pairwise independent random variables as follows:

Xi := Y1 + i · Y2 mod p, i ∈ [0, p− 1]
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4.3 Universal Hash Functions

Definition: Universal Hash Functions

Let U be a universe with |U | ≥ n. A family of hash functions H = {h : U → [0, n−1]}
is k-universal if, for any distinct elements u1, . . . , uk ∈ U , we have

Ph∈RH[h(u1) = h(u2) = · · · = h(uk)] ≤ 1
nk−1

Definition: Strongly Universal Hash Functions

H = {h : U → [0, n−1]} is strongly k-universal if, for any distinct elements u1, . . . , uk ∈
U and for any values y1, . . . , yk ∈ [0, n− 1], we have

Ph∈RH[h(u1) = y1, . . . , h(uk) = yk] ≤ 1
nk

Theorem

Family H is strongly k-universal if the random variables h(0), . . . , h(|U |−1) are k-wise
independent.

Proposition

Let p be a prime number and U = [0, n− 1].

H = {ha,b(x) := ax+ b mod p|a, b ∈ [0, p− 1]}

is strongly 2-universal.

Proposition

Let U = [0, pk − 1] ≡ [0, p− 1]k \ {(0, . . . , 0)} and a = (a0, . . . , ak−1), then

H = {ha,b(x) := a · x+ b mod p|a ∈ U, b ∈ [0, p− 1]}

is strongly 2-universal.

Proposition

If hash table size is not prime, then

H = {ha,b(x) := (a · x+ b mod p) mod n|a, b ∈ [0, p− 1]

is 2-universal (not strongly 2-universal).

We can construct k-universal families of hash functions by instead of constructing degree 1
polynomials, we can construct polynomials of degree k−1. Random k−1 degree polynomial
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is k-wise independent.

Lemma (Maximum Number of Collisions)

The expected number of collisions when inserting k elements in a table of size n using
a 2-universal hash family is

≤ k2

2n

Proof. Let Xij = 1 if h(i) = h(j) and Xij = 0 otherwise. The number of collisions is
X =

∑
i<j

Xij.

E[X] = E[
∑
i<j

Xij]

=
∑
i<j

E[Xij]

≤

(
k
2

)
n

≤ k2

2n

Lemma (Maximum Load of Entry of Hash Table)

With probability ≥ 1
2 , the maximum load when inserting k elements in a table of size

n using a 2-universal hash family is

≤
√

2k2

n

When k ≈ n, we expect
√

2n.

Proof. Let C be the maximum load entry of the hash table. The number of collisions
X ≥

(
C
2

)
∼ C2

2 . By Markov’s inequality,

P

[
X ≥ k2

n

]
≤ 1

2 =⇒ P

(
X <

k2

n

)
≥ 1

2

Then,

P

[
C2

2 <
k2

n

]
≥ P

[
X <

k2

n

]
≥ 1

2

Corollary

If h ∈ H is a random hash function from a 2-universal family of hash functions, then
for any set S ⊆ U of size k ≤

√
n, the probability of h being perfect for S is at least 1

2 .
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4.4 Perfect Hashing

Suppose we are given a set of keys S of size n in advance. Our goal is to construct a hash
table with no collisions and O(n) memory.

We can do this with a 2-universal hash family, but we would need two layers of hash tables.

For the first layer, use a hash table with n entries. Let H be a 2-universal hash family of
maps from U → [0, n− 1]. If we pick a random hash function h ∈ H, with probability ≥ 1

2 ,
the maximum load of any entry is

√
2n.

Since we have the keys, we can check if the maximum load is ≤
√

2n, otherwise we can
just pick another random hash function and try again. In constantly many tries, with high
probability, we will find a hash function h such that maximum load is ≤

√
2n.

Now that we have a first hash table with maximum load
√

2n, we can construct a second
layer of hash tables. For each entry i ∈ [0, n − 1], we will construct a hash table with ni

entries, where ni is the number of keys that hash to i.

Since ni is the load of entry i, we have ni(ni−1)
2 collisions in entry i. By corollary, we also

have that the total number of collisions will be ≤ n, and thus we have

n−1∑
i=0

n2
i = O(n)

LetHi be a 2-universal hash family of maps from U → [0, n2
i−1]. For each entry i ∈ [0, n−1],

we can pick a random hi ∈ Hi with probability ≥ 1
2 , the maximum load of any entry is ≤

√
2

(no collisions). Since we have the keys, we can check the maximum load, and if it is not
≤
√

2, then try again. In constantly many tries, with high probability, we will find a hi

which has no collisions.

Thus, we have constructed a hash scheme with no collisions and total memory

n+
n∑

i=1
n2

i = O(n)
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Chapter 5

Graph Sparsification

Often times, graph algorithms for graphs G = (V,E) have runtimes that depend on the
number of edges |E|.

For example, the runtime of Dijkstra’s algorithm is O(|E| + |V | log |V |) and the runtime of
the Ford-Fulkerson algorithm is O(|E| · f ∗), where f ∗ is the value of the maximum flow.

Definition: Dense
A graph is dense if

|E| = ω(|V |1+γ)
for γ ∈ (0, 1).

Definition: Sparse

A graph is sparse if
|E| = O(|V | · poly log |V |) = Õ(|V |)

We would like to sparsify a graph, while preserving properties of the graph to reduce to the
runtime in practical purposes.

When sparsifying a graph, we may lose some information about the graph, so we will settle
with approximately preserving properties.

5.1 Minimum Cut

Let G = (V,E,w) be an undirected graph with nonnegative edge weights we ≥ 0. When
working with an unweighted graph, then we = 1 for all e ∈ E. Denote n = |V | and m = |E|.
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Definition: Graph Cut

A cut (S, S) is a partition of the vertices V into two sets S and S. That is V = S ∪ S
and S ∩ S = ∅.
The value of a cut is the sum of the weights of the edges that cross the cut, i.e. edges
with one end in S and the other end in S. Denote E(S, S) as the edges that cross the
cut, then the value of the cut is

w(S, S) =
∑

e∈E(S,S)

we

Definition: Minimum Cut
A cut of minimum value.

Definition: Edge Contraction

Let e = uv be an edge in G = (V,E,w). The contraction of e is a new graph
H = (V ∪ {z} \ {u, v}, F, w′), where u, v is replaced by z, any edge ux ̸= e is replaced
by zx, and any edge vx ̸= e is replaced by zx. Also, w′(z, x) = w(u, x).

The contraction of an edge e is a graph with one less vertex and it may not necessarily be a
simple graph. In the case of weighted graphs, we can combine parallel edges into one edge
with the sum of the weights.

Lemma

Let e = uv be an edge in G = (V,E,w) and let H be obtained by contracting an edge
e ∈ E.
The value of the minimum cut in H is at least the value of the minimum cut in G.

Algorithm 2 Randomized Minimum Cut
1: Input: Undirected, unweighted graph G = (V,E)
2: Output: A minimum cut (S, S) of G
3: while n > 2 do
4: Pick e = uv uniformly at random from E
5: Contract e
6: if n = 2 then return (S, S) induced by the two vertices in V

Theorem (Karger)

The randomized minimum cut algorithm outputs a minimum cut with probability at
least 2

n(n−1) .

Proof. Let (S, S) be a minimum cut of G and let c = w(S, S). If we never contract an edge
from E(S, S), then the algorithm succeeds, as we will output w(S, S).
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Computing the probability that an edge from E(S, S) is contracted in one iteration of the
algorithm. Each vertex is a cut, so each vertex has degree at least c. Hence, we know that
at least (n− i+ 1) · c

2 edges remain.

The probability that we contract an edge from E(S, S) is

w(S, S)
# edges ≤

c

(n− i+ 1) · c
2

= 2
n− i+ 1

Hence, the probability that we never contract an edge from E(S, S) is at least
n−2∏
i=1

(
1− 2

n− i+ 1

)
=

n∏
i=3

(
1− 2

i

)
= 2
n(n− 1) = 1(

n
2

)
To improve the above probability, we can run the algorithm multiple times and output the
minimum cut over all iterations. If we repeat t times, then the failure probability is at most(

1− 2
n(n− 1)

)t

If we set t = 2n(n− 1), then we get a failure probability of at most
(

1− 2
n(n− 1)

)2n(n−1)

=
(1− 2

n(n− 1)

)n(n−1)/2
4

∼ 1
e4

Runtime: Each iteration of the algorithm takes O(m) time, and we run the algorithm O(n2)
times, so the total runtime is O(n2m).

Corollary (Karger)

There are at most
(

n
2

)
minimum cuts in a graph.

Proof. Each minimum cut is preserved with probability at least 1
(n

2)
. Since the events that

each minimum cut is preserved are disjoint (and sum of probability is ≤ 1), there can be at
most

(
n
2

)
minimum cuts.

Lemma

If c is the minimum cut in G, then there are at most n2α cuts of value k ≤ αc in G.

5.2 Graph Sparsification Algorithm

We need to set p to be the corrected expected value for both the number of edges in H and
the value of each cut in H. After that, we need to prove concentration bounds for values of
all cuts in H, simultaneously.
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Algorithm 3 Randomized Sparsification
1: Input: Undirected, unweighted graph G = (V,E) and parameter ε > 0
2: Output: A sparse weighted graph H = (V, F, w) such that for every cut (S, S), we have

(1− ε) · w(S, S) ≤ wH(S, S) ≤ (1 + ε) · w(S, S)

3: p ∈ (0, 1) be a parameter
4: For each edge e ∈ E, include e in F with probability p, and if included, set wH(e) = 1

p

We can do this using Chernoff-Hoeffding bounds, then show that there are not too many
small cuts in G, and thus, the probability that we have a bad cut in H is small. We can
then use union bound to prove all cuts are concentrated.

Theorem (Karger)

Let c be the value of the minimum cut in G. Set

p = 15 log n
ε2c

With probability ≥ 1− 4
n
, the above algorithm outputs a graph H = (V, F, wH) with

|F | = O(p · |E|) such that for every cut (S, S) in G:

(1− ε) · w(S, S) ≤ wH(S, S) ≤ (1 + ε) · w(S, S)

Proof. Let H = (V, F, wH) be the graph output by the algorithm. Take a cut (S, S).
Denote k = w(S, S). Let Xe be the indicator random variable for the event that e ∈ F .

Then, wH(S, S) =
∑

e∈E(S,S)

Xe

p
and |F | =

∑
e∈E

Xe.

Hence, the expected values are

• E[|F |] =
∑
e∈E

E[Xe] = p ·m

• E[wH(S, S)] =
∑

e∈E(S,S)

E[wH(e)] =
∑

e∈E(S,S)

E[Xe/p] = k

Now compute concentration bounds for |F | and wH(S, S):

• For |F |,
P [|F | ≥ (1 + ε) · p ·m] ≤ e−ε2·E[|F |]/3 = e−ε2·p·m/3 ≤ 1

n2

• For wH(S, S), note that p · wH(S, S) is a sum of independent random variables with
values in 0, 1. We can use Chernoff bounds to get

P [
∣∣∣wH(S, S)− k

∣∣∣ ≥ ε · k] ≤ 2 · e−ε2·kp/3 = 2n−5k/c
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Note that k ≥ c, as c is the value of the minimum cut of G. The above is the probability
that a single cut deviates from its expectation. We want all cuts. Using union bound,

P [a cut deviates from expectation] ≤
∑

S⊆V

P [
∣∣∣wH(S, S)− k

∣∣∣ ≥ ε · k]

≤
∑

α=1,2,4,8,...

∑
S⊆V

αc≤|wG(S,S)|≤2·αc

P [
∣∣∣wH(S, S)− k

∣∣∣ ≥ ε · k]

≤
∑

α=1,2,4,8,...

n4α · P [
∣∣∣wH(S, S)− k

∣∣∣ ≥ ε · k|αc ≤ k ≤ 2αc]

≤
∑

α=1,2,4,8,...

n4α · 2 · n−5α

=
∑

α=1,2,4,8,...

n−α ≤ 4
n

We have assumed that the graph has a large min-cut value: c = Ω(log n). This assumption is
so that p < 1. To remove the assumption, we can use non-uniform sampling of edges. If we
choose this non-uniform sampling carefully, we can get a sparse graph which approximates
all cuts with high probability.

Definition: Strong Connectivity

A k-strong component is a maximal induced subgraph that is k-edge-connected.
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Chapter 6

Algebraic Techniques: Fingerprinting,
Polynomial Identity Testing, and
Parallel Matching Algorithms

6.1 Verifying String Equality

Suppose Alice and Bob each maintain the same large database of information. They want
to check if their databases are consistent.

However, transmission of all data is expensive and sending the entire database is not feasi-
ble. Say Alice’s database is given by bits (a1, . . . , an) and Bob’s database is given by bits
(b1, . . . , bn). A deterministic consistency check requires both of them to communicate n bits.

Problem

Given strings (a1, . . . , an) and (b1, . . . , bn), check if they are equal.

Fingerprinting: Let a =
n∑

i=1
ai2i−1 and b =

n∑
i=1

bi2i−1. Let Fp(x) = x mod p be a fingerprint-

ing function for a prime p.

Protocol:

1. Alice picks a random prime p and sends (p, Fp(a)) to Bob.

2. Bob checks whether Fp(a) ≡ Fp(b) mod p and sends1 if values are equal
0 otherwise

The total bits communicated is O(log p) bits, dominated by Alice’s message. If the two
strings are equal, then the protocol is always right.
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If (a1, . . . , an) ̸= (b1, . . . , bn), then a ̸= b. If a number M is in {−2n, . . . , 2n}, then the number
of distinct primes p|M is < n.

• Each prime divisor of M is ≥ 2, so if M has t distinct prime divisors, then |M | > 2t.

• |M | ≤ 2n =⇒ t ≤ n

Thus, Fp(a) ≡ Fp(b) if and only if p|a− b. The protocol fails for at most n choices of p.

Theorem (Prime Number Theorem)

There are m
log m

primes among the first m positive integers.

Choosing p among the first tn log(tn) integers, we have

P [Fp(a) ≡ Fp(b)] ≤ n

tn log(tn)/ log(tn log(tn)) = Õ
(1
t

)

The number of bits sent is Õ(log t+ log n). Choosing t = n solves it.

6.2 Polynomial Identity Testing

Problem

Input: two polynomials P (x), Q(x).
Output: are they equal?

Two polynomials are equal if and only if all their coefficients are equal.

We cannot just compare coefficients since polynomials may sometimes be given implicitly.
For example, we may want to test if P1(x) · P2(x) = P3(x). If P1, P2 have degree ≤ n, then
deg(P3) ≤ 2n, otherwise the problem is trivial.

Multiplication of two polynomials of degree n take O(n log n) by arithmetic operation of fast
Fourier transform. Polynomial evaluation also takes O(n) arithmetic operations, if we are
given the coefficients.

Lemma (Roots of Univariate Polynomials)

Let F be a field and P (x) ∈ F[x] be a nonzero univariate polynomial of degree d. Then,
P (x) has at most d roots in F.

P1, P2 = P3 ⇐⇒ P1P2−P3 = 0, so there are at most 2n roots by lemma. Take S ⊆ F of size
4n. Let a ∈ S be random. Compute Q(a) = P3(a)− P1(a)P2(a).

Pa∈S[Q(a) = 0] ≤ deg(Q)
|S|

≤ 2n
4n = 1

2
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Lemma (Ore-Schwartz-Zippel-de Millo-Lipton)

Let F be a field and P (x1, . . . , xn) ∈ F[x1, . . . , xn] be a nonzero polynomial of degree
≤ d. Then, for any set S ⊆ F, we have

Pr[P (a1, . . . , an) = 0|ai ∈ S] ≤ d

|S|

6.3 Bipartite Matching

Problem

Input: bipartite graph G = (L,R,E) with |L| = |R| = n.
Output: does G have a perfect matching?

A perfect matching corresponds to a permutation Sn.

Let X ∈ Fn×n be such that

Xi,j =
yi,j if there is an edge between (i, j) ∈ L×R

0 otherwise
The determinant is

det(X) =
∑

σ∈Sn

(−1)σ
n∏

i=1
Xi,σ(i)

G has a perfect matching if and only if det(X) is a nonzero polynomial. Therefore, testing
if G has a perfect matching is a special case of Polynomial Identity Testing.

Algorithm: Evaluate det(X) at a random value for the variables yi,j.

6.4 General Matching

Problem

Input: undirected graph G = (V,E) where |V | = 2n.
Output: does G have a perfect matching?

Definition: Tutte Matrix
TG is defined by the 2n× 2n matrix: let F be an arbitrary orientation of the edges in
E. Then,

[TG]i,j =


xi,j if (i, j) ∈ F
−xi,j if (j, i) ∈ F
0 otherwise
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Theorem (Tutte 1947)

G has a perfect matching if and only if det(TG) ̸= 0.

6.5 Parallel Algorithms and Isolation Lemma

Often times in parallel computation, when solving a problem with many possible solutions,
we want all processors working towards the same solution. We need to isolate a specific
solution without knowing any element of the solution space.

The solution is to implicitly choose a random order on the feasible solutions and require
processors to find solution of lowest rank in this order. We can use this to compute the
minimum weight perfect matching.

Lemma (Isolation Lemma)

Given a set system over [n] := {1, . . . , n}, if we assign a random weight function
w : [n] → [2n], then the probability that there is a unique solution minimum weight
set is at least 1

2 .

This could be quite counter-intuitive. A set system can have Ω(2n) sets. On average, there
are Ω

(
2n

2n2

)
sets of of a given weight, as max weight is ≤ 2n2. Isolation lemma tells us that

with high probability, there is only one set of minimum weight.

Proof. Let S be our set system and v ∈ [n]. Let Sv be a family of sets from S which contain
v, and Nv be the family of sets from S which do not contain v. Let

αv := min
A∈Nv

w(A)− min
B∈Sv

w(B \ {v})

• αv < w(v) implies v does not belong to any minimum weight set.

• αv > w(v) implies v belongs to every minimum weight set.

• αv = w(v) implies v is ambiguous.

αv is independent of w(v) and w(v) is chosen uniformly at random from [2n].

P [v ambiguous] ≤ 1
2n =⇒ union boundP [∃ ambiguous element] ≤ 1

2

If two different sets A,B have minimum weight, then any element in A∆B must be ambigu-
ous. The probability this happens ≤ 1

2 .
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Chapter 7

Sublinear Time Algorithms

We cannot answer for all, there exists, or exactly type statements. We can answer for most,
averages, or approximate type statements.

If N is the input size, then a sublinear time algorithm may not read in all of N , so we want
an algorithm in o(N).

7.1 Approximate Diameter

Definition: α-Multiplicative Approximation

1
α
Xmax ≤ X ≤ αXmax

Approximate Diameter of a Point Set

Input: m points and a distance matrix D such that

• Dij is the distance from i to j.

• D is symmetric and satisfies triangle inequality; Dij ≤ Dik +Dkj.

The input is given in adjacency matrix representation. Input size is N = m2.
The diameter Dab is the maximal distance between indices a and b.
Output: Indices k, l such that

Dkl ≥
Dab

2

This will be a 2-approximation algorithm.

Algorithm: Pick k arbitrary, pick l to maximize Dkl, output indices k, l.
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Correctness:
Dab ≤ Dak +Dkb ≤ Dkl +Dkl = 2Dkl

Runtime: O(m) = O(N1/2)

7.1.1 Lower Bound

Let D be the distance matrix where Di,i = 0 for all i ∈ [m] and Di,j = 1 otherwise. Let D′

be the same matrix as D except for one pair (a, b), we make

D′
ab = D′

ba = 2− δ

Check that D′ satisfies properties of a distance matrix. We can prove that it would take
Ω(N) time (number of queries) to decide if diameter is 1 or 2− δ.

7.2 Connected Components

Approximate Number of Connected Components

Input: graph G = (V,E) in adjacency list, precision parameter ε > 0.
Output: if C is number of connected components of G, output with probability ≥ 3

4 ,
C ′ such that

|C ′ − C| ≤ εn

Lemma (Number of Connected Components)

Let G = (V,E) be a graph. For vertex v ∈ V , let nv be the number of vertices in
connected component of v. Let C be the number of connected components of G. Then,

C =
∑
v∈V

1
nv

Take a sample of vertices from G, compute nv and output the normalization. The problem
is that computing nv make take linear time. If nv is large, then 1

nv
is small, so we can drop

it.

Lemma (Estimating Number of Connected Components)

Let n′
v = min{nv, 2/ε}, then ∣∣∣∣∣∑

v∈V

1
nv

−
∑
v∈V

1
n′

v

∣∣∣∣∣ ≤ εn

2
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Proof. Let U = {v ∈ V |nv > 2/ε}.∣∣∣∣∣∑
v∈U

(
ε

2 −
1
nv

)∣∣∣∣∣ =
∑
v∈U

(
ε

2 −
1
nv

)

≤ |U | ε2
≤ nε

2

Sample vertex v, run BFS, and stop if we see 2/ε vertices.

Algorithm: Choose s = Θ(1/ε2) vertices v1, . . . , vs uniformly at random. Compute n′
vi

using BFS. Return
C ′ = n

s

s∑
i=1

1
n′

vi

Runtime: Θ(1/ε2) vertices sampled, each run takes O(1/ε2) time to compute. Adding results
takes O(s) = O(1/ε2) time. The total runtime is O(1/ε4).

Correctness: To prove correctness, we show that with probability ≥ 3
4 , we have∣∣∣∣∣ns

s∑
i=1

1
n′

vi

−
∑
v∈V

1
nv

∣∣∣∣∣ ≤ εn

Dividing both sides by n
s
, ∣∣∣∣∣

s∑
i=1

1
n′

vi

− s

n

∑
v∈V

1
nv

∣∣∣∣∣ ≤ εs

By previous lemma and triangle inequality, it is enough to prove that with high probability
≥ 3

4 ∣∣∣∣∣
s∑

i=1

1
n′

vi

− s

n

∑
v∈V

1
n′

v

∣∣∣∣∣ ≤ εs

2

For the ith estimate, have a random variable Xi = 1
n′

v
with probability 1

n
, ai = 0, and bi = 1.

We can use Hoeffding’s inequality. So X =
s∑

i=1
Xi.

E[X] =
s∑

i=1
E[Xi] =

s∑
i=1

n∑
j=1

1
n′

vj

· 1
n

= s

n

n∑
j=1

1
n′

vj

This is exactly the quantity in the absolute value. So pick l = ε · s/2

P [fail] ≤ 2 exp
− 2ε2s2

4
s

 = 2 exp
(
−ε2s

2

)
≤ 1

4
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Chapter 8

Random Walks and Markov Chains

8.1 Random Walks

Definition: Random Walk

Given a graph G = (V,E), a random walk starts from a vertex v0 and at each time
step, it moves uniformly to a random neighbour of the current vertex in G.

vt+1 ←R NG(vt)

Basic questions for random walks:

• Stationary distribution: does the random walk converge to a stable distribution?

• Mixing time: how long does it take for the walk to converge to the stationary distri-
bution?

• Mean hitting time: starting from v0, what is the expected number of steps until it
reaches another vertex vf?

• Cover time: how long does it take to reach every vertex of the graph at least once?

Example: Suppose G = Kn and a, b ∈ V . We can ask all the questions above.

• Mean hitting time: Let X be the number of steps for random walk from a→ b.

P [X = 1] = 1
n− 1

P [X = 2] = n− 2
n− 1 ·

1
n− 1

P [X = k] =
(
n− 2
n− 1

)k−1
· 1
n− 1
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X is a geometric random variable with p = 1
n−1

E[X] = 1
p

= n− 1

• Stationary distribution: If at time t, we have
(

1
n
, . . . , 1

n

)
, then at t+ 1, the probability

that we come back to any vertex is (n− 1) · 1
n−1 ·

1
n

= 1
n
.

• Cover time: is similar to the coupon collector problem.

8.2 Markov Chains

A random walk is a special kind of stochastic process:

P [Xt = vt|X0 = v0, . . . , Xt−1 = vt−1] = P [Xt = vt|Xt−1 = vt−1]

in that the probability that we are at vt at time t depends only on the state of our process
at time t− 1.

Definition: Markov Chain
A process in which the probability of an event only depends on the previous event.

A Markov chain can be seen as weighted directed graph, where the vertex is a state of the
Markov chain and an edge (i, j) corresponds to the transition probability from i to j.

Definition: Irreducible
A Markov chain is irreducible if the underlying directed graph is strongly connected.

Definition: Transition Matrix

The weighted adjacency matrix P ∈ Rn×n of the weighted directed graph of a Markov
chain.
Pi,j corresponds to the transition probability from i to j.

Definition: Probability Vector

pt ∈ Rn is the probability vector where pt(i) := P [state i at time t].

Definition: Transition

pt+1 = pt · P
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Definition: Period
The period of a state i is

gcd{t ∈ N : P t
i,i > 0}

That is, the GCD of all times t such that the probability of starting at i and being
back at i at time t is positive.

The period of the square graph on 4 vertices is 2, since for any vertex, we have to take an
even number of steps to get back to that vertex.

Definition: Aperiodic

State i is aperiodic if its period is equal to 1.
A Markov chain is aperiodic if all states are aperiodic, otherwise it is periodic.

Bipartite graphs yield periodic Markov chains.

Lemma
For any finite, irreducible, and aperiodic Markov chain, there exists T <∞ such that

P t
i,j > 0 for any i, j ∈ V and t ≥ T

8.3 Stationary Distributions

Definition: Stationary Distribution

A stationary distribution of a Markov chain is a probability distribution π ∈ Rn such
that

πP = π

Informally, π is an equilibrium/fixed point state, as we have π = πP t for any t ≥ 0.

The intuition is if we run a finite, irreducible, and aperiodic Markov chain long enough, we
will converge to a unique stationary distribution.

Definition: Total Variational Distance
Given two distributions p, q ∈ Rn,

∆T V (p, q) = 1
2

n∑
i=1
|pi − qi| =

1
2 ∥p− q∥1

Proposition

pt converges to q if and only if lim
t→∞

∆T V (pt, q) = 0.
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8.3.1 Mixing Time

Definition: Mixing Time

The ε-mixing time of a Markov chain is the smallest t such that

∆T V (pt, π) ≤ ε

regardless of the initial starting distribution p0.

For the complete graph Kn, we have 0s along the diagonal of P and 1
n−1 everywhere else.

Let J be the all one’s matrix and I be the identity matrix,

P = 1
n− 1J −

1
n− 1I = 1

n− 11T 1− 1
n− 1I

The eigenvalue λ1 = 1 gives 1P = 1. The characteristic polynomial of P is

P = λ1v1v
T
1 + λ2v2v

T
2 + · · ·+ λnvnv

T
n

P t = λt
1v1v

T
1 + λt

2v2v
T
2 + · · ·+ λt

nvnv
T
n

λ2 = · · · = λn = − 1
n−1 and the corresponding v1, . . . , vn are orthonormal.

Definition: Spectral Gap

The spectral gap λ is given by

λ = min{1− α2, 1− |αn|}

so that |αi| ≤ 1− λ for 2 ≤ i ≤ n.

Theorem
The ε-mixing time of a random walk is upper bounded by

1
λ

log
(
n

ε

)

8.4 Hitting Time

Definition: Hitting Time

Given states i, j in a Markov chain,

Ti,j := min{t ≥ 1 : Xt = j,X0 = i}

Ti,j =∞ if the Markov chain never visits j starting from i.
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Definition: Mean Hitting Time

τi,j := E[Ti,j]

Lemma (Hitting Time Lemma)

For any finite, irreducible, and aperiodic Markov chain and for any two states i, j, not
necessarily distinct, we have

P [Ti,j <∞] = 1 and E[Ti,j] <∞

Proof. We know we can find M <∞ such that (PM)i,j > 0 for all i, j.

8.5 Linear Algebra Background

Definition: Eigenvalue/Eigenvector

Given a square matrix A ∈ Rn×n, λ ∈ C is an eigenvalue of A if there is a vector
v ∈ Cn such that Av = λv.
v is the eigenvector corresponding to λ.

Definition: Spectral Radius

Denoted ρ(A), is the maximum absolute value of the eigenvalues of A.

Theorem (Gelfand’s Formula)

ρ(A) = lim
t→∞

∥∥∥At
∥∥∥1/t

F

where ∥A∥F = tr(ATA)1/2.

Definition: Geometric Multiplicity

An eigenvalue λ has geometric multiplicity k if the space of eigenvectors of A with
eigenvalue λ has dimension k.
That is, if the dimension of the nullspace of A− λI is k.

Definition: Algebraic Multiplicity

An eigenvalue λ of A has algebraic multiplicity k if (t − λ)k is the highest power of
t− λ dividing det(tI − A).
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Lemma (Positivity Lemma)

If A ∈ Rn×n is a positive matrix and u, v ∈ Rn are distinct vectors such that u ≥ v,
then Au > Av.
Moreover, there exists ε > 0 such that Au > (1 + ε)Av.

Proof.
[A(u− v)]i =

∑
j

Aij(u− v)j ≥ min
i,j

Aij

n∑
j=1

(u− v)j

Since uj ≥ vj, there is one index k such that uk > vk, we have∑
j

(u− v)j ≥ uk − vk > 0

8.5.1 Perron-Frobenius

Theorem (Perron)

Let A ∈ Rn×n be a positive matrix. Then, the following hold:

• ρ(A) is an eigenvalue, and it has a positive eigenvector.

• ρ(A) is the only eigenvalue in the complex circle |λ| = ρ(A).

• ρ(A) has geometric multiplicity 1.

• ρ(A) has algebraic multiplicity 1.

Proof. (first point) By definition of ρ(A), there is an eigenvalue λ ∈ C such that |λ| = ρ(A).
Let v be the corresponding eigenvector. Let u be the vector defined by ui = |vi|. Then we
have

(Au)i =
∑

j

Aijuj ≥

∣∣∣∣∣∣
∑

j

Aijvj

∣∣∣∣∣∣ = |λvi| = ρ(A) · ui

so Au ≥ ρ(A)u.

If the inequality is strict, then we have

A2u > ρ(A) · Au

and there is some positive ε > 0 such that

A2u ≥ (1 + ε)ρ(A)Au

By induction, we have
Anu ≥ (1 + ε)n−1 · ρ(A)n−1 · Au

By Gelfand’s formula, we would have

ρ(A) = lim
n→∞

∥An∥1/n
f ≥ (1 + ε)ρ(A)
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which is a contradiction. So equality must hold.

(second point) We just proved that ρ(A) is an eigenvalue, with eigenvector u ≥ 0. Note
that u > 0 since ρ(A)ui = (Au)i > 0. The only eigenvalue on the complex circle |µ| = ρ(A)
is ρ(A). If we had another eigenvalue λ ̸= ρ(A) in the circle |µ| = ρ(A), where z is the
eigenvalue corresponding to λ, then we know that w defined as wi = |zi| satisfies

Aw = ρ(A)w ⇔
∑

j

Aijwj = ρ(A) · |zi| = |λzi| =
∣∣∣∣∣∣
∑

j

Aijzj

∣∣∣∣∣∣
for every 1 ≤ i ≤ n.

Lemma
If the conditions above hold, then there is α ∈ C nonzero such that αz ≥ 0.

But if αz ≥ 0 and a nonzero vector, we have

λ(αz) = α(λz) = α(Az) = A(αz) ≥ 0

since A is positive and αz ≥ 0. Thus, we know that λ is a nonnegative number. However,
ρ(A) is the only nonnegative number in the circle |µ| = ρ(A).

(third point) Suppose not. Let u, v be two linearly independent eigenvectors for ρ(A). We
can assume that both u, v are real vectors. If u was complex, then u = φ+ iψ, but ρ(A)u =
Au = Aφ+ iAψ = ρ(A)φ+ iρ(A)ψ, so we can just choose u = φ.

Let β > 0 such that u− βv ≥ 0 and at least one entry is 0. u− βv ̸= 0 since the vectors are
linearly independent. But for each 1 ≤ i ≤ n,

ρ(A) · (u− βv)i = (A(u− βv))i > 0

which contradicts our choice of β. Thus, there cannot be two linearly independent vectors.

Theorem (Perron-Frobenius)

If a nonnegative matrix A ∈ Rn×n is aperiodic and irreducible, then the following hold:

• ρ(A) is an eigenvalue and it has positive eigenvector.

• ρ(A) is the only eigenvalue in the complex circle |λ| = ρ(A).

• ρ(A) has geometric multiplicity 1.

• ρ(A) has algebraic multiplicity 1.

Proof. A being aperiodic and irreducible implies that there is m > 0 such that Am has all
positive entries. Apply Perron’s theorem to Am and note that the eigenvalues of Am are λm

i ,
where λi are the eigenvalues of A.
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8.6 Fundamental Theorem of Markov Chains

Definition: Return Time
For state i

Ti,i := min{t ≥ 1 : Xt = i,X0 = i}

Definition: Expected Return Time

τi,i := E[Ti,i]

The return time from state i to itself is Ti,i and the expected return time is τi,i := E[Ti,i].

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible, and aperiodic Markov chain has the following properties:

1. There exists a unique stationary distribution π, where πi > 0 for all i ∈ [n].

2. The sequence of distributions {pt}t≥0 will converge to π, no matter what the
initial distribution is, i.e. for every distribution p0 ∈ Rn

≥0,

lim
t→∞

p0P
t = π

3.
πi = lim

t→∞
P t

i,i = 1
τi,i

Proof. If our underlying graph is undirected, it is easy to guess the stationary distribution:

πi = di

2m,m = |E|

If AG is the adjacency matrix of G and D = diag(d1, . . . , dn) is the transition matrix, then

P = D−1AG

• P is not symmetric, but it is similar to a symmetric matrix

D1/2PD−1/2 = D1/2D−1AGD
−1/2 = D−1/2AGD

−1/2 = P ′

• P and P ′ have the same eigenvalues and P ′ has only real eigenvalues.

• Eigenvectors of P are D−1/2vi where vi are eigenvectors of P ′.
Moreover, vi can be taken to form an orthonormal basis.

• If a graph is strongly connected, then Perron-Frobenius for irreducible nonnegative
matrices.
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– Unique eigenvector whose eigenvalue has maximum absolute value.
– Eigenvector has all positive coordinates.
– Eigenvalue is positive.

• This eigenvector is π, so all random walks converge to π.

8.7 Page Rank

Definition: Page Rank

A directed graph describing relationships between set of webpages. There is a directed
edge (i, j) if there is a link from page i to page j.
Goal: rank how important a page is.

Page Rank Algorithm

1. Each page has pagerank value 1
n

2. In each step, each page:

1. Divides its pagerank value equally to its outgoing link
2. Sends these equal shares to the pages it points to
3. Updates its new pagerank value to be the sum of shares it receives

Equilibrium of pagerank values equal to probabilities of stationary distribution of random
walk

P ∈ Rn×n, Pi,j = 1
δout(i)

Pagerank values and transition probabilities satisfy same equations:

pt+1(j) =
∑

i:(i,j)∈E

pt(i)
δout(i) =⇒ pt+1 = pt · P

If the graph is finite, irreducible, and aperiodic, then the fundamental theorem guarantees
stationary distribution.

In practice, the graph may not satisfy the fundamental theorem’s conditions. We can modify
the original graph as follows:

• Fix a number 0 < s < 1

• Divide s fraction of its pagerank value to its neighbours

• 1− s fraction of its pagerank value to all nodes evenly
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This is equivalent to the random walk. With probability s, we go to one of its neighbours and
with probability 1 − s, we go to a random page. The resulting graph is strongly connected
and aperiodic, meaning it has a stationary distribution.
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Part III

Mathematical Programming
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Chapter 9

Linear Programming

9.1 Introduction

Definition: Mathematical Programming

Problems of the form

min f(x)
s.t. g1(x) ≤ 0

...
gm(x) ≤ 0
x ∈ Rn

Definition: Affine Function
f : Rn → R where

f(x) = c1x1 + · · ·+ cnxn + b = cTx+ b

Definition: Linear Programming

A mathematical programming problem where f, g1, . . . , gm are linear functions.

min cTx

s.t. Ax ≤ b

x ∈ Rn

where we can change A =
(
A1 A2 · · · Am

)
, b =

(
b1 b2 · · · bm

)
and the con-

straints are Ax ≤ b.
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Definition: Standard Form

min cTx

s.t. Ax = b

x ≥ 0

Stock portfolio optimization: n companies, stock of company i costs ci ∈ R. Each company
i has expected profit pi ∈ R and the budget is B ∈ R.

max pTx

s.t. cTx ≤ B

x ≥ 0

9.2 Fundamental Theorem of Linear Inequalities

Theorem (Farkas (1894, 1898), Minkowski 1896)

Let a1, . . . , am, b ∈ Rn and t = rank(a1, . . . , am, b). Then either

1. b is a convex combination of linearly independent vectors from a1, . . . , am.

2. There exists a hyperplane H = {x : cTx = 0} such that

• cT b < 0
• cTai ≥ 0
• H contains t− 1 linearly independent vectors from a1, . . . , am

Definition: Separating Hyperplane

The hyperplane H in the theorem is a separating hyperplane.

Lemma (Farkas’ Lemma)

Let A ∈ Rm×n and b ∈ Rm. The following are equivalent:

• There exists x ∈ Rn such that x ≥ 0 and Ax = b.

• yT b ≥ 0 for each y ∈ Rm such that yTA ≥ 0.
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Lemma (Farkas’ Lemma - Variant 1)

Let A ∈ Rm×n and b ∈ Rm. Then exactly one of the following statements hold:

• There exists x ∈ Rn such that x ≥ 0 and Ax = b.

• There exists y ∈ Rm such that yT b ≥ 0 and yTA ≤ 0.

Lemma (Farkas’ Lemma - Variant 2)

Let A ∈ Rm×n and b ∈ Rm. The following are equivalent:

• There exists x ∈ Rn such that Ax ≤ b.

• yT b ≥ 0 for each y ≥ 0 such that yTA = 0.

Proof. Let M =
[
I A −A

]
. Then Ax ≤ b has a solution if and only if Mz = b has a

nonnegative solution z ≥ 0. Now apply the original version of the lemma.

9.3 Duality Theory

From Farkas’ lemma, we have that Ax = b and x ≥ 0 if and only if yT b ≥ 0 for each y ∈ Rm

such that yTA ≥ 0.

yTA ≤ cT =⇒ yTAx ≤ cTx

=⇒ yT b ≤ cTx

Thus, if yTA ≤ cT , then we have yT b is a lower bound on the solution to the linear program.

Consider the primal LP min{cTx : Ax = b, x ≥ 0} and the dual LP max{yT b : yTA ≤ cT}.

Theorem (Weak Duality)

Let x be a feasible solution of the primal LP (minimization) and y be a feasible solution
of the dual LP (maximization). Then

yT b ≤ cTx

Let α∗, β∗ ∈ R be the optimal values for the primal and dual respectively.

• If the primal and dual are feasible, then

β∗ ≤ α∗

• If the primal is unbounded, then the dual is infeasible.

• If the dual is unbounded, then the primal is infeasible.
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Theorem (Strong Duality)

If the primal LP and dual LP are feasible, then

bTy = β∗ = α∗ = cTx

Proof. Consider the LP

min 0
s.t. yTA ≤ cT

cTx− yT b ≤ 0
Ax = b

x ≥ 0

The LP is encoded by

B

(
x
y

)
=


A 0
−A 0
cT −bT

0 AT

−I 0


(
x
y

)
≤


b
−b
0
c
0


Farkas’ lemma (variant 2) gives the system has a solution if and only if for each z =
(uT , vT , λ, wT , αT ) ≥ 0 such that zB = 0 then we have uT b− vT b+ wT c ≥ 0 (inner product
with the right hand vector.

If λ > 0, and zB = 0 if and only if uTA − vTA + λcT − αT = 0 or uTA − vTA + λcT ≥ 0
since α ≥ 0. Also, wTAT = λbT or Aw = λb. Solving, we have

λ[(uT − vT )b+ cTw] ≥ 0

If λ = 0, let x, y be feasible solutions. Then x ≥ 0, Ax = b, yTA ≤ cT . Thus,

cTw ≥ yTAw = 0 ≥ (vT − uT )Ax = (vT − uT )b

Lemma (Affine Farkas’ Lemma)

Let the system Ax ≤ b have at least one solution, and suppose that the inequality

cTx ≤ δ

holds whenever x satisfies Ax ≤ b. Then for some δ′ ≤ δ, the linear inequality

cTx ≤ δ′

is a nonnegative linear combination of the inequalities of Ax ≤ b.
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9.3.1 Complementary Slackness

Theorem (Complementary Slackness)

If the optima in both the primal and dual is finite and x, y are feasible solutions, then
the following are equivalent:

• x, y are optimal solutions to the primal and dual.

• cTx = yT b.

• If xi > 0, then the corresponding inequality yTAi ≤ ci is an equality; yTAi = ci.

9.4 Applications of LP Duality

9.4.1 Game Theory - Minimax Theorems

Let there be two players Alice and Bob where each player has a finite set of strategies
SA = {1, . . . ,m} and SB = {1, . . . , n}. There are payoff matrices A,B ∈ Rm×n for Alice and
Bob, respectively, where if Alice plays i and Bob plays j, then

• Alice gets Aij

• Bob gets Bij

Assume players are rational, i.e. want to maximize their payoffs.

Definition: Nash Equilibrium

A strategy profile (i, j) is called a Nash equilibrium if the strategy played by each
player is optimal, given the strategy of the other player. That is

• Aij ≥ Akj for all k ∈ SA.

• Bij ≥ Bil for all l ∈ SB

Battle of the Sexes Game: (2, 1), (1, 2) are Nash equilibria.

Football Opera
Football (2, 1) (0, 0)
Opera (0, 0) (1, 2)

Table 9.1: Battle of the sexes Payoff Matrix

Prisoner’s Dilemma: The number in each cell is for example the number of years of jail.
(−5, 5) is the Nash equilibrium.
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Silent Snitch
Silent (−1,−1) (−10, 0)
Snitch (0,−10) (−5,−5)

Table 9.2: Prisoner’s Dilemma

Definition: Mixed Strategy

A mixed strategy is a probability distribution over a set of pure strategies S. If Alice’s
strategies are SA = {1, . . . , n}, her mixed strategies are

∆A := {x ∈ Rn : x ≥ 0, ∥x∥1 = 1}

Models situation where players choose their strategy “at random”.

Definition: Expected Gain

Payoffs for each player in mixed strategy.

(x, y) is the profile of mixed strategies used by Alice and Bob. We have

vA(x, y) =
∑

(i,j)∈SA×SB

Aijxiyj = xTAy

vB(x, y) =
∑

(i,j)∈SA×SB

Bijxiyj = xTBy

Definition: (Mixed) Nash Equilibrium

A strategy profile x ∈ ∆A, y ∈ ∆B is called a mixed Nash equilibrium if the strategy
played by each player is optimal, given the strategy of the other player. That is

• xTAy ≥ zTAy for all z ∈ ∆A.

• xTBy ≥ xTBw for all w ∈ ∆B.

Jump left Jump right
Kick left (−1, 1) (1,−1)

Kick right (1,−1) (−1, 1)

Table 9.3: Penalty Kick

There is no pure Nash equilibrium.

Definition: Zero-Sum Game
Payoff matrices satisfy A = −B.

Since it is a zero-sum game, A = −B, then Alice wants to maximize her payoff, while Bob
wants to maximize his payoff, but B = −A, so it is equivalent to minimizing his payoff.
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Theorem (Minimax Theorem)

In a zero-sum game, for any payoff matrix A ∈ Rm×n:

max
x∈∆A

min
y∈∆B

xTAy = min
y∈∆B

max
x∈∆A

xTAy

Proof. For given x ∈ ∆A,
min
y∈∆B

xTAy = min
j∈SB

(xTA)j

The left hand side can be written as

max s

s.t. s ≤ (xTA)j, ∀j ∈ SB∑
i∈SA

xi = 1

x ≥ 0

For given y ∈ ∆B,
max
x∈∆A

xTAy = max
i∈SA

(Ay)i

The right hand side can be written as

min t

s.t. t ≥ (Ay)i, ∀i ∈ SA∑
j∈SB

yj = 1

y ≥ 0

There programs are duals of each other.

Proof. (Dual) Use the second LP,

min t+ − t−
s.t. t+ − t−wi − (Ay)i = 0, ∀i ∈ SA∑

j∈SB

yj = 1

y ≥ 0

which is

min (e1 − e2)T z

s.t. C =
[
0 0 I 0
1 −1 −A −I

] 
t+
t−
y
w

 =


1
0
...
0


z ≥ 0

finding the dual results in the first LP
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9.4.2 Learning Theory - Boosting

Consider the classification problem over X = {x1, . . . , xm} where the set of hypothesis H :=
{h : X → {0, 1}} and each x ∈ X has a correct value c(x) ∈ {0, 1}. Data is sampled from
an unknown distribution q ∈ ∆X .

Weak Learning Assumption

For any distribution q ∈ ∆X , there is a hypothesis h ∈ H which is wrong less than
half the time.

∃γ > 0,∀q ∈ ∆X , ∃h ∈ H, Px∼q[h(x) ̸= c(x)] ≤ 1− γ
2

Weak learning assumption implies something much stronger: it is possible to combine clas-
sifiers in H to construct a classifier that is always right (strong learning)

Theorem
Let H be a set of hypotheses satisfying weak learning assumption. Then there is a
distribution p ∈ ∆H such that the weighted majority classifier

cp(x) :=


1 if

∑
h∈H

phh(x) ≥ 1
2

0 otherwise

is always correct. That is, cp(x) = c(x) for all x ∈ X .

Proof. Let M ∈ {−1, 1}m×n where m = |X | and n = |H|.

Mij =
+1 if classifier hj wrong on xi

−1 otherwise
Weak learning: ∑

1≤i≤m

qi · δhj(xi )̸=c(xi) ≤
1− γ

2
Note that Mij = 2 · δhj(xi) ̸=c(xi) − 1, where δhj(xi) ̸=c(xi) = 1 if they are different and 0 if they
are the same, and

qTMej ≤ −γ =⇒ qTMp ≤ −γ
for any p ∈ ∆H. By minimax, we have

max
q∈∆X

min
p∈∆H

qTMp = min
p∈∆H

max
q∈∆X

qTMp ≤ −γ

In particular, the right hand side implies weighted classifier given by optimal solution p∗ is
always correct.

Proof. Pick an image xi is equivalent to choosing q = ei. We know that eT
i Mp∗ ≤ −γ.

n∑
j=1

Mijp
∗
j ≤ −γ ⇐⇒

n∑
j=1

p∗
jδhj(xi )̸=c(xi) ≤

1− γ
2
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9.4.3 Combinatorics - Bipartite Matching

Given a bipartite graph G = (L∪R,E), does it have a perfect matching? We previously saw
that we can randomly isolate a perfect matching, but we want to remove the randomness.
This would lead to a fast parallel algorithm for matchings.

Definition: Circulation

Given an even cycle C = (e1, e2, . . . , e2k), the circulation of C is given by

circ(C) = |w(e1)− w(e2) + · · ·+ w(e2k−1)− w(e2k)|

Lemma

If we assign weights w(ei) such that circ(C) ̸= 0 for each cycle C of the bipartite graph
G, then we get the minimum weight perfect matching is unique.

Suppose we have a weight assignment w. Let Gw be the subgraph of G given by the union
of all min w-weight perfect matchings in G.

Claim
Circulation of each even cycle in Gw is zero.

Proof. Use LP duality. The primal problem is

min
∑
e∈E

wexe

s.t.
∑

e∈δ(u)
xe = 1, ∀e ∈ L ∪R

x ≥ 0

The dual is

max
∑

u∈L∪R

yu

s.t. yu + yv ≤ we, ∀e = (u, v) ∈ E

By complementary slackness, xe ̸= 0 in the primal means yu + yv = we is the dual to be
optimal.
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Chapter 10

Semidefinite Programming

10.1 Positive Semidefinite Matrices

Definition: Symmetric Matrix

A matrix S ∈ Rn×n is symmetric if Sij = Sji for all i, j ∈ [n].

Theorem (Spectral Theorem)

Any symmetric matrix in Rn×n has n real eigenvalues and an orthonormal basis in Rn

for the eigenvectors, i.e. we can write

S =
n∑

i=1
λiviv

T
i

where λi ∈ R and vi ∈ Rn such that ⟨vi, vj⟩ = δij.

Definition: Positive Semidefinite (PSD)

A symmetric matrix S ∈ Rn×n having only nonnegative eigenvalues. We write S ⪰ 0.
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Lemma (Equivalent Characterizations of PSD Matrices)

• All eigenvalues of S are nonnegative.

• S = Y TY for some Y ∈ Rd×n where d ≤ n (smallest d is equal to rank).

• xTSx ≥ 0 for all x ∈ Rn.

• S = LDLT , where D is a nonnegative diagonal matrix and L is the unit lower-
triangular matrix (only 1’s along diagonal, other values in the lower-triangular
part).

• S is in the convex hull of the set

{uuT : u ∈ Rn}

• S = UTDU where D is a nonnegative diagonal matrix and U ∈ Rn×n is an
orthonormal matrix (UTU = I).

• Any principal minor of A has nonnegative determinant (choose A ⊆ [n], and
remove all rows/columns not in A).

10.2 Semidefinite Programming Formulation

Let Sm := Sm(R) be the space of all m×m real symmetric matrices.

Definition: Semidefinite Programming (SDP)

Deals with problems of the form

min cTx

s.t. x1 · A1 + · · ·+ xn · An ⪰ B

x ∈ Rn

Ai, B ∈ Sm(R)

C ⪰ D denotes that C −D ⪰ 0, i.e. C −D is PSD.

10.2.1 LP vs. SDP

Let the LP min{aTx : Cx ≥ b : x ∈ Rn} and the SDP min{cTx : x1 · A1 + · · · + xn · An ⪰
B, x ∈ Rn}. If (Ax)i ≥ bi, we can set Aj’s to be diagonal matrices where each entry in
diagonal is Aij and B = diag(b1, . . . , bm). Then∑

j

xjAj −B = diag(
∑

A1jxj − b1, . . . ,
∑

Amjxj − bm)
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10.3 Convex Algebraic Geometry

Definition: Linear Matrix Inequalities (LMI)

A linear matrix inequality is an inequality of the form

A0 +
n∑

i=1
Aixi ⪰ 0

where A0, . . . , An are symmetric matrices.

Definition: Spectrahedron

A set defined by finite many linear matrix inequality.

S =
{
x ∈ Rn :

n∑
i=1

Aixi ⪰ B,Ai, B ∈ Sm

}

It turns out, it is a set defined by only one LMI. If we had ∑
i Aixi ⪰ B and ∑

i Cixi ⪰ D,

then Ei =
[
Ai 0
0 Ci

]
and F =

[
B 0
0 D

]
, and this all turns into

∑
i

Eixi ⪰ F =⇒
[∑

i Aixi −B 0
0 ∑

i Cixi −D

]

Examples of spectrahedra:

• Circle: C = {(x, y) ∈ Rn : x2 + y2 ≤ 1}. Then[
1− x y
y 1 + x

]
⪰ 0

Principal minors determinants: 1− x ≥ 0, 1 + x ≥ 0, 1− x2 − y2 ≥ 0.

• Hyperbola: H = {(x, y) ∈ R2 : xy ≥ 1, x ≥ 0, y ≥ 0}. Then[
x 1
1 y

]

Principal minors determinants: xy − 1 ≥ 0, x ≥ 0, y ≥ 0.

• Elliptic Curve: E = {(x, y) ∈ R2 : −2y2 − x3 − 3x2 + x+ 3 = 0}. Thenx+ 1 0 y
0 2 −x− 1
y −x− 1 2


Principal minors determinants: x + 1 ≥ 0, 4 − (x + y)2 ≥ 0, 2x + 2 − y2 ≥ 0,−2y2 −
x3 − 3x2 + x+ 3 ≥ 0.
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Definition: Projected Spectrahedron

A set S ∈ Rn that has the form

S =
x ∈ Rn : ∃y ∈ Rt s.t.

n∑
i=1

Aixi +
t∑

j=1
Bjyj ⪰ C,Ai, Bj, C ∈ Sm


Examples of projected spectrahedra:

• Projected hyperbola: R>0 =
{
x ∈ R : ∃y ∈ R,

[
x 1
1 y

]
⪰ 0

}
.

• Projected quadratic cone intersected with halfspace:

S =
{

(x, y) ∈ R2 : ∃z ∈ R,
[
z + y 2z − x
2z − x z − y

]
⪰ 0

}

10.3.1 Testing Points in Spectrahedron

To be able to optimize, we must be able to test whether a point x ∈ Rn is inside our
spectrahedron

S =
{
x ∈ Rn :

n∑
i=1

Aixi ⪰ B,Ai, B ∈ Sm

}

By definition of x ∈ S, it is equivalent to saying Z =
n∑

i=1
Aixi − B ⪰ 0. We can use

Symmetric Gaussian Elimination.

Let Z =


z11 z12 · · · z1n

z12 · · ·
... · · ·
z1n · · ·

, L1 =


1 0 · · · 0

−z12/z11 1 · · · 0
... 0 · · · 0

−z1n/z11 0 · · · 1

. Then L1ZL
T
1 = diag(z11, Z1) is

symmetric. If z11 = 0, then the first row and column must all be 0, otherwise Z is not PSD.

This algorithm has strongly polynomial runtime.

10.4 Control Theory

Definition: Linear Difference Equation

x(t+ 1) = Ax(t), x(0) = x0

When A and x0 are nonnegative, this is a Markov chain.

When t→∞, under what conditions will x(t) remain bounded? Or go to zero?
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Definition: Stable

When the system x(t) converges to zero.

Proposition

The system x(t) is stable if and only if |λi(A)| < 1.

Definition: Lyapunov Functions

Generalize energy in systems. Functions on x(t) decrease monotonically on trajectories
of the system.
For discrete-time system,

V (x(t)) = x(t)TPx(t)

To make it monotonically decreasing, we need

V (x(t+ 1)) ≤ V (x(t))⇐⇒ x(x+ 1)TPx(t+ 1)− x(t)TPx(t) ≤ 0
⇐⇒ x(t)TATPAx(t)− x(t)TPx(t) ≤ 0
⇐⇒ ATPA− P ⪯ 0

Theorem

Given a matrix A ∈ Rm×m, the following conditions are equivalent:

1. All eigenvalues of A are inside the unit circle, i.e. |λi(A)| < 1.

2. There is P ∈ Sm such that P ≻ 0 and ATPA− P ≺ 0.

Proof. ( =⇒ ) Let P = ∑∞
i=1(AAT )i ≻ 0.

ATPA− P =
∞∑

i=1
(ATA)i −

∞∑
i=0

(AAT )i = −I +
∑
i≥1

(ATA)−
∑
i≥1

(AAT ) ≺ 0

(⇐= ) We know ATPA− P ≺ 0. Then xT (ATPA− P )x < 0. If x = vi be the eigenvector
corresponding to eigenvalue λi. Then,

(Ax)TP (Ax)− xTPx < 0 =⇒ λiv
T
i Pλivi − vT

i Pvi < 0 =⇒ (|λi|2 − 1)vT
i Pvi < 0

Since P is positive definite, then vT
i Pvi > 0, then |λi| < 1 for the inequality to hold.

Definition: Linear Difference Equation with Control Input

Let A ∈ Rm×m, B ∈ Rm×k,

x(t+ 1) = Ax(t) +Bu(t), x(0) = x0

If we properly choose control input u(t), we can make our system x(t) behave in a way that
we want. We want to set the control input to be u(t) = Kx(t) for some fixed K. This
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is equivalent as replacing A with A + BK. This is harder to solve via simple eigenvalue
description, but still solved in the same way via Lyapunov functions. We want P ≻ 0 such
that

(A+BK)TP (A+BK)− P ≺ 0
We can make this into an SDP with some matrix manipulations.

10.5 Duality Theory

Definition: Frobenius Inner Product
Let A,B ∈ Sm, then

⟨A,B⟩ := tr[AB] =
∑
i,j

AijBij

Definition: Frobenius Norm

∥A∥F =
√
⟨A,A⟩ =

√∑
i,j

A2
ij

Definition: Polar Dual
Given a spectrahedron S ⊆ Sm,

S◦ = {Y ∈ Sm : ⟨Y,X⟩ ≤ 1, ∀X ∈ S}

Definition: Standard Semidefinite Program

min ⟨C,X⟩
s.t. ⟨Ai, X⟩ = bi

X ⪰ 0

The variables are a positive semidefinite matrix X, each constraint is given by the Frobenius
inner product ⟨Ai, X⟩ = bi and we can obtain the LP standard form by making X and Ai’s
to be diagonal.

Standard Primal as LMI: ⟨Ai, X⟩ =
∑
j≤k

Aijkxjk, then L = diag(∑A1jkxjk, . . . ,
∑
Atjkxjk),

L− diag(b) 0 0
0 −L+ diag(b) 0
0 0 X
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min ⟨C,X⟩
s.t.

∑
i,j

Γijxij + Γ0 ⪰ 0

X ∈ R(m+1
2 )

Γ0 =

−diag(b) 0 0
0 diag(b) 0
0 0 0

 and Γjk = diag(diag(Aijk),−diag(Aijk), Ejk + Ekj).

Proposition

If X ⪰ 0 and A ⪰ B, then ⟨A,X⟩ ⪰ ⟨B,X⟩.

Consider the SDP and multiply ith equality by variable yi:
t∑

i=1
yi ⟨Ai, X⟩ =

t∑
i=1

yibi =⇒
〈

t∑
i=1

yiAi, X

〉
= yT b

Thus, if
t∑

i=1
yiAi ⪯ C, then

yT b =
〈

t∑
i=1

yiAi, X

〉
≤ ⟨C,X⟩

Therefore, yT b is a lower bound on the SDP.

Definition: Dual Semidefinite Program

max yT b

s.t.
t∑

i=1
yiAi ⪯ C

Theorem (Weak Duality)

Let X be a feasible solution of the primal SDP and y be a feasible solution of the dual
SDP. Then

yT b ≤ ⟨C,X⟩

Theorem (Complementary Slackness)

Let X be a feasible solution of the primal SDP and y be feasible solution of the dual
SDP. If (X, y) satisfy the complementary slackness condition(

C −
t∑

i=1
yiAi

)
X = 0

Then (X, y) are primal and dual optimum solutions of the SDP problem.
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Strong duality for SDPs are more complex than LPs; both the primal and dual may be
feasible, but strong duality may not hold.

Definition: Strictly Feasible

The primal SDP is strictly feasible if there is a feasible solution X ≻ 0.

The dual SDP is strictly feasible if there is a feasible solution y such that
t∑

i=1
yiAi ≺ C.

Theorem (Strong Duality under Slater Conditions)

If the primal SDP and dual SDP are both strictly feasible, then the optimal value of
the primal equals the optimal value of the dual.
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Part IV

Approximation Algorithms
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Chapter 11

Linear Programming Relaxations and
Rounding

Many optimization problems are NP-hard. We want to find approximate solutions in poly-
nomial time and even for problems in P.

Definition: Integer Linear Program (ILP)

min cTx

s.t. Ax ≤ b

x ∈ Nn

ILPs capture many combinatorial optimization problems, but also capture NP-hard prob-
lems.

11.1 Independent Set

Maximum Independent Set Problem

Let G = (V,E) be a graph. Find an maximal independent set S ⊆ V such that
u, v ∈ S =⇒ {u, v} /∈ E.
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Maximum Independent Set ILP

max
∑
v∈V

xv

s.t. xu + xv ≤ 1, ∀{u, v} ∈ E
xv ∈ {0, 1}, ∀v ∈ V

To get efficient (exact or approximate) algorithms for problems, the following strategy is
useful:

1. Formulate combinatorial optimization problem as ILP.

2. Derive LP from ILP by removing integral constraints (LP relaxation).

3. We are minimizing over the same objective function, by over a potentially larger set of
solutions.

opt(LP) ≤ opt(ILP)

4. Solve the LP using an efficient algorithm. If the solution is integral, then we have our
optimal solution, otherwise, if we have fractional values, we have to round our answer
by some procedure so that

opt(LP) ≤ rounded solution ≤ c · opt(ILP)

where c is our approximation factor

Let P = {x ∈ Rn
≥0 : Ax = b} be the polytope defined by the LP min{cTx : Ax = b, x ≥ 0}.

Definition: Vertex Solutions
A solution x ∈ P is a vertex solution if ∄y ̸= 0 such that x+ y ∈ P and x− y ∈ P .

Definition: Extreme Point Solutions
x ∈ P is an extreme point solution if ∃u ∈ Rn such that x is the unique optimum
solution to the LP with constraint P and objective uTx.

Definition: Basic Solutions

Let supp(x) := {i ∈ [n] : xi > 0} be the set of nonzero coordinates of x. Then x ∈ P
is a basic solution if and only if the columns of A indexed by supp(x) are linearly
independent.
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11.2 Vertex Cover

Minimum Vertex Cover Problem

Input: graph G = (V,E) (can have cost cv for all v ∈ V ).
Output: minimum set S ⊆ V such that for each {u, v} ∈ E, we have

|S ∩ {u, v}| ≥ 1

Weighted Version: each vertex v ∈ V has a cost cv ∈ R≥0.

Vertex Cover ILP

min
∑
u∈V

cuxu

s.t. xu + xv ≥ 1, ∀{u, v} ∈ E
xu ∈ {0, 1}, ∀u ∈ V

11.2.1 Unweighted Simple 2-Approximation

1: List edges E in any order
2: S = ∅
3: for {u, v} ∈ E do
4: if S ∩ {u, v} = ∅ then
5: S = S ∪ {u, v}
6: return S

Correctness: By construction S is a vertex cover. If added elements to S k times, then
|S| = 2k and G has a matching of size k, which means that optimum vertex cover is at least
k. So we get a 2-approximation.

11.2.2 LP Relaxation

Drop the integrality constraints

min cTx

s.t. xu + xv ≥ 1, ∀{u, v} ∈ E
0 ≤ xu ≤ 1, ∀u ∈ V

Solve this LP and get the optimal solution z and round zv to the nearest integer to get the
solution y. Since each edge is covered, at least one of zu, zv is ≥ 1/2 by the feasibility of LP.
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Cost of y is ∑
u∈V

cuyu ≤
∑
u∈V

cu(2zu) ≤ 2OPT (ILP)

11.3 Set Cover

Minimum Set Cover Problem
Input: a finite set U and a collection S1, . . . , Sn of subsets of U .
Output: fewest collection of sets I ⊆ [n] such that⋃

j∈I

Sj = U

Weighted version: each set Si has a weight wi ∈ R≥0.

Set Cover ILP

min
∑
i∈[n]

wixi

s.t.
∑

i:v∈Si

xi ≥ 1, ∀v ∈ U

xi ∈ {0, 1}, ∀i ∈ [n]

11.3.1 LP Relaxation

min
∑
i∈[n]

wixi

s.t.
∑

i:v∈Si

xi ≥ 1, ∀v ∈ U

0 ≤ xi ≤ 1, ∀i ∈ [n]

Suppose we get a feasible solution z ∈ [0, 1]n, can we just round each zi to the nearest
integer?

No, say v ∈ U is in 20 sets and zi = 1
20 for each of the sets v ∈ Si, then rounding would not

select any Si where v ∈ Si.

11.3.2 Random Pick

Think of zi as the probability we would pick Si. z describes an optimal probability distribu-
tion over ways to choose Si.
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Algorithm 4 Random Pick
1: Input: z = (z1, . . . , zn) ∈ [0, 1]n such that z is optimal to LP.
2: Output: set cover for U
3: I = ∅
4: for i = 1 to n do
5: I = I ∪ {i} with probability zi

6: return I

Consider the random pick process from point of view v ∈ U . Let v ∈ S1, . . . , Sk. We select

Si with probability zi such that
k∑

i=1
zi ≥ 1.

For example, let v ∈ S1, S2 and probability of picking Si is P [Si] = 1
2 .

P [v not covered] = P [¬S1] · P [¬S2] = (1− z1)(1− z2) = 1
4

Then the probability of being covered is

P [v covered] = 1− 1
4 = 3

4

Lemma (Probability of Covering an Element)

In a sequence of k independent experiments, in which the ith experiment has success
probability pi and

k∑
i=1

pi ≥ 1

then there is a probability ≥ 1− 1/e that at least one experiment is successful.

Proof. Probability that we fail is (1 − p1) · · · (1 − pk). Note that 1 − x ≤ e−x so (1 −
p1) · · · (1− pk) ≤ e−

∑
pi ≤ e−1.

11.4 Randomized Rounding

1: Input: z = (z1, . . . , zn) ∈ [0, 1]n such that z is a solution to our LP
2: Output: set cover for U
3: I = ∅
4: while there is v ∈ U uncovered do
5: for i = 1 to n do
6: I = I ∪ {i} with probability zi

7: return I
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Lemma (Probability Decay)

Let t ∈ N. The probability that the for loop will be executed more than ln(|U |) + t
times is at most e−t.

Proof. The probability that j is not covered is at most e−(t+log m) by previous lemma. By
union bound on all m elements is equal to 1

m
e−t which is at most e−t.

11.4.1 Cost of Rounding

We now know will cover with high probability, so we just need to bound the cost of the
solution. At each iteration of the for loop, our expected cover weight is

n∑
i=1

wizi

After t iterations of the for loop, the expected weight is

ω = t
n∑

i=1
wizi

By Markov,
P [X ≥ 2E[X]] ≤ 1

2

Lemma (Cost of Rounding)

Given z optimal for the LP, our randomized rounding outputs, with probability ≥ 0.45,
a feasible solution to set cover with ≤ 2(ln |U |+ 3) ·OPT (ILP) cost.

Proof. Let t = ln(|U |) + 3. There is a probability at most e−3 < 0.05 that the while loop
runs more than t steps. After t steps, the expected weight is

ω = t
∑

wizi ≤ tOPT (ILP)

Markov’s inequality shows that probability that our solution has weight ≥ 2ω is ≤ 1
2 . By

union bound, with probability ≤ 0.55, either run for more than t times, or our solution has
weight ≥ 2ω. Thus, with probability ≥ 0.45, we stop at t iterations and construct a solution
to set cover with cost ≤ 2tOPT (ILP).
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Chapter 12

Semidefinite Programming
Relaxations and Rounding

Definition: Quadratic Program (QP)

min g(x)
s.t. qi(x) ≥ 0

where g(x) and each qi(x) are quadratic functions on x.

QPs can formulate optimization problems but can capture NP-hard problems. In an ILP, if
x ∈ {0, 1}, then the quadratic constraint is x(x− 1) = 0.

We can relax QPs to SDPs to get better approximation algorithms.

12.1 Maximum Cut

Maximum Cut Problem

Given a graph G = (V,E), find a cut S ⊆ V of maximum size.

The ILP is

max
∑
e∈E

weze

s.t. xu + xv ≥ ze, ∀e = {u, v} ∈ E
2− xu − xv ≥ ze, ∀e = {u, v} ∈ E
xv ∈ {0, 1}, ∀v ∈ V

To get efficient exact or approximate algorithms for problems, the following strategy is useful:

79



1. Formulate the optimization problem as a quadratic program.

2. Derive the SDP from the QP by going to higher dimensions and imposing the PSD
constraint; this is called an SDP relaxation.

3. We are still maximizing the same objective function but over a potentially larger set
of solutions, thus,

OPT (SDP ) ≥ OPT (QP )

4. Solve the SDP approximately using an efficient algorithm.

• If the solution to SDP is integral and one-dimensional, then it is a solution to QP
and we are done.

• If the solution has higher dimension, then we have to devise a rounding procedure
that transforms it to an integral and one-dimensional solution. The rounded SDP
solution ≥ c ·OPT (QP ).

Suppose
∑
e∈E

= 1 in the problem.

Proposition

OPT (ILP ) = 1 if and only if G is bipartite.

Proposition

OPT (ILP ) ≥ 1
2 .

Proof. ze = 1 with probability 1
2 and ze = 0 with probability 1

2 .

Exu∼{0,1}
[∣∣∣E(S, S)

∣∣∣] =
∑
e∈E

weE[ze]

=
∑
e∈E

we ·
1
2

= 1
2

Proposition

If G is a complete graph, then OPT = 1
2 + 1

2(n−1) .
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The LP relaxation:

max
∑
e∈E

weze

s.t. xu + xv ≥ ze, ∀e = {u, v} ∈ E
2− xu − xv ≥ ze, ∀e = {u, v} ∈ E
0 ≤ xv ≤ 1, ∀v ∈ V
0 ≤ ze ≤ 1, ∀e ∈ E

Setting xv = 1
2 , ze = 1, we always get OPT (LP ) = 1, thus this is not helpful.

QP: Consider 1 − (xuxv + (1 − xu)(1 − xv)), this is 1 if xu ̸= xv and 0 if xu = xv which is
selecting an edge when xu is in the other side of the cut to xv.

max
∑

e={u,v}∈E

we(−2xuxv + xu + xv)

s.t. xv(xv − 1) = 0, ∀v ∈ V

If we instead choose that xv = {−1, 1} instead of {0, 1}, we can get a better looking program:

max
∑

e={u,v}∈E

we

2 (1− xuxv)

s.t. x2
v = 1, ∀v ∈ V

We can transform the QP into higher dimension relaxation with variable yv ∈ Rd and get
the SDP relaxation (Delorme, Poljak 1993):

max
∑

e={u,v}∈E

we

2 (1− ⟨yu, yv⟩)

s.t. ∥yv∥2 = 1, ∀v ∈ V

The SDP is

max
∑

{u,v}∈E

wuv

(1−Xuv

2

)
s.t. Xuv = 1

X ⪯ 0

where X = Y TY and Y is a matrix where each column is yi.

Note that the constraints form a unit sphere in Rd.

12.1.1 SDP Explanation

Let γuv = yT
u yv = cos(yu, yv). For any edge, we want γuv ≈ −1 as this maximizes the weight.

Geometrically, we want vertices from our max-cut S to be as far away from S as possible.
If all yv’s are in one-dimensional space, then we get original quadratic program

OPT (SDP ) ≥Weight of max-cut
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Figure 12.1: Vectors y⃗v embedded onto a unit sphere in Rd.

Example: Consider the complete graph G = K3 with equal weights on edges. Embed
y1, y2, y3 ∈ R2 in a unit circle at 120◦ apart. We get OPTSDP (K3) = 1

3 ·
1
2 ·3(1− cos(120◦)) =

1
6 · 3 ·

3
2 = 3

4 and OPTmax-cut(K3) = 2
3 . So we get approximation 8

9 which is better than the
LP relaxation.

12.1.2 Rounding

Let zu ∈ Rn be an optimal solution to the SDP. To convert it into a cut, we need to pick
sides.

Theorem (Goemans, Williamson 1994)

Choose a random hyperplane through the origin of the unit sphere.

We choose a normal vector g ∈ Rn from a Gaussian distribution and set xu = sign(⟨g, zu⟩) =
sign(gT zu) as the solution.

We can pick a random hyperplane through the origin in polynomial time by sampling a
vector g = (g1, . . . , gn) by drawing gi ∈ N (0, 1). If g′ is the projection of g onto a two
dimensional plane, then g′/ ∥g′∥2 is uniformly distributed over the unit circle in this plane.

Analysis

The probability that the edge {u, v} crosses the cut is the same as the probability that zu, zv

fall in different sides of the hyperplane, i.e. P [{u, v} crosses cut] = P [g splits zu, zv].

If we look at the problem in the plane:

The probability of splitting zu, zv is

P [{u, v} crosses cut] = θ

π
= cos−1(zT

u zv)
π

= cos−1(γuv)
π

Let X be the random variable for value of the cut which is X =
∑

{u,v}∈E

wuvXuv, and the
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Figure 12.2: Plane of two vectors being cut by hyperplane.

expected value of the cut is

E[value of cut] =
∑

{u,v}∈E

wuvE[Xuv] =
∑

{u,v}∈E

cos−1(γuv)
π

Recall that
OPTSDP =

∑
{u,v}∈E

1
2wuv(1− zT

u zv) =
∑

{u,v}∈E

1
2wuv(1− γuv)

If we find α such that
cos−1(γuv)

π
≥ α

1− γuv

2 , ∀γuv ∈ [−1, 1]

Then we have an α-approximation algorithm. For x ∈ [−1, 1], we have

cos−1(x)
π

≥ 0.878 · 1− x2

The Random Hyperplane Cut algorithm is a rounding procedure for SDPs if the con-
straints form a unit circle.
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Chapter 13

Hardness of Approximation

Definition: α-Approximation Algorithm

For α ≥ 1, an algorithm is α-approximate for a minimization (maximization) problem
if on every input instance, the algorithm finds a solution with cost ≤ α · OPT (≥
1
α
·OPT ).

For some problems, it is possible to prove that even the design of approximation algorithms
for certain values of α is impossible, unless P = NP (we would have an exact algorithm).

Definition: Reduction
To prove a combinatorial problem C is NP -hard, pick an NP -complete combinatorial
problem L and show a reduction such that

• maps every YES instance of L to a YES instance of C.

• maps every NO instance of L to a NO instance of C.

Definition: Approximation Reduction

To prove a combinatorial problem C is NP -hard, pick an NP -complete combinatorial
problem L and show a reduction such that

• maps every YES instance of L to a YES instance of C.

• maps every NO instance of L to a VERY-MUCH-NO instance of C.
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13.1 Traveling Salesman Problem

Traveling Salesman Problem (TSP)

Input: set of points X and a symmetric distance function d : X × X → R≥0.
For any path p0p1, . . . , pt in X , the length of the path is the sum of distances travelled
t−1∑
i=1

d(pi, pi+1).

Output: find a cycle that reaches all points in X of shortest length.

Definition: General TSP-NR
TSP, but visit every vertex exactly once.

If P ̸= NP , then there is no poly-time constant-approximation algorithm for General TSP-
NR. In general, if there is any function f : N→ N such that r(n) is computable in polynomial
time, then it is hard to r(n)-approximate General TSP-NR, if we assume that P ̸= NP .

Theorem
If there is an algorithm M which solves TSP-NR with α-approximation, then P = NP .

Definition: Hamiltonian Cycle Problem

Given a graph G = (V,E), decide whether there exists a cycle C which passes through
every vertex at most once.

Reduction of TSP to Hamiltonian Cycle Problem: If we had an algorithm M which
solved the α-approximate TSP-NR problem, then from G, construct the weighted graph
H = (V, F, w) such that H is the complete graph on V with

w(u, v) =
1 if {u, v} ∈ E

(1 + α) · |V | if {u, v} /∈ E

If G has a Hamiltonian cycle, then OPT for TSP is of value ≤ |V |. If G has no Hamiltonian
cycle, then OPT for TSP must use an edge not in E, thus value is ≥ (1 + α) · |V |. Thus, M
on input H will output a Hamiltonian cycle of G, if G has one, or it will output a solution
with value ≥ (1 + α) · |V |.

If G has a Hamiltonian cycle, then H has a cycle of length |V |. If G has no Hamiltonian
cycle, then any solution to TSP-NR(H) has length ≥ (1 + α) · |V |.

For TSP-NR(H,n), if the algorithm finds a solution ≤ α |V | (α-approximation), then G has
a Hamiltonian cycle, and if ≥ (1+α) · |V |, then G has no Hamiltonian cycle. However, these
two conditions combined shows that TSP-NR does not have an α-approximation.
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13.2 Complexity Classes

Definition: Non-deterministic Polynomial (NP )

Set of languages L ⊆ {0, 1}∗ such that there exists a poly-time Turing Machine V ,
such that

x ∈ L⇐⇒ ∃w ∈ {0, 1}poly(|x|) s.t. V (x,w) = 1

Definition: Bounded Probabilistic Polynomial (BPP )

Set of languages L ⊆ {0, 1}∗ such that there exists a poly-time Turing Machine M ,
such that for every x ∈ {0, 1}∗, we have

PR∈{0,1}poly(|x|) [M(x,R) = L(x)] ≥ 2
3

Definition: Randomized Polynomial (RP )

Set of languages L ⊆ {0, 1}∗ such that there exists a poly-time Turing Machine M ,
such that

x ∈ L =⇒ PR∈{0,1}poly(|x|) [M(x,R) = 1] ≥ 2
3

x /∈ L =⇒ PR∈{0,1}poly(|x|) [M(x,R) = 1] = 0

Definition: Complement Randomized Polynomial (co-RP )

Languages L ⊆ {0, 1}∗ such that L ∈ RP .

13.3 Proof Systems

Definition: Proof System

A prover and a verifier agree on the following:

• The prover must provide proofs in a certain format.

• The verifier can use algorithms from a certain complexity class for verification.

A statement is given to both the prover and verifier. The prover writes down a proof
of the statement, while the verifier uses an algorithm of their choice to check the
statement and proof, and accepts/rejects accordingly.

NP as a proof system:
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• L ⊆ {0, 1}n is the language, verifier can use any poly-time Turing Machine.

• Given an element x, the prover gives a proof (also known as a witness) w ∈ {0, 1}poly(|x|).

• Verifier picks a poly-time Turing Machine V and outputs TRUE if V (x,w) = 1 and
FALSE otherwise.

Definition: Completeness

True statements have a proof in the system.

Definition: Soundness
False statements do not have a proof in the system.

NP:

• Completeness: x ∈ L =⇒ ∃w ∈ {0, 1}poly(|x|) such that V (x,w) = 1.

• Soundness: x /∈ L =⇒ ∀w ∈ {0, 1}poly(|x|) we have V (x,w) = 0.

13.4 Probabilistic Proof Systems

Definition: Probabilistic Proof System

In a probabilistic proof system, the verifier has a randomized algorithm V for which

• Given language L (language of correct statements).

• x ∈ L =⇒ there exists proof w such that P [V w(x) = 1] = 1.

• x /∈ L =⇒ for any proof w, we have P [V w(x) = 1] ≤ 1
2 .

Definition: Probabilistic Checkable Proofs (PCPs)

The class of Probabilistic Checkable Proofs consists of languages L that have a ran-
domized poly-time verifier V such that

• x ∈ L =⇒ there exists proof w such that P [V w(x) = 1] = 1.

• x /∈ L =⇒ for any proof w, we have P [V w(x) = 1] ≤ 1
2 .

PCP [r(n), q(n)] consists of L ∈ PCP such that on inputs x of length n, it uses O(r(n))
random bits and examines O(q(n)) bits of a proof w.

Note that n does not depend on w, only on x.

PCP [0, poly(n)] = NP since we use 0 randomness and polynomial size prover.
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Definition: Interactive Proof Systems

The class IP consists of all languages L that have an interactive proof system (P, V )
where

• the verifier V is a randomized, polynomial time algorithm.

• there is an honest prover P (who can be all powerful).

• for any x ∈ {0, 1}∗

– x ∈ L =⇒ for an honest prover P , the proof ΠP satisfies

P [V ΠP (x) = 1] = 1

– x /∈ L =⇒ for any prover P ′, the proof ΠP ′ satisfies

P [V ΠP ′ (x) = 1] ≤ 1
2

Theorem (PCP Theorem AS’98, ALMSS’98)

PCP [log n, 1] = NP

13.5 Approximability of Max 3SAT

Definition: Max 3SAT
Input: a 3CNF formula φ on Boolean variables x1, . . . , xn and m clauses.
Output: the maximum number of clauses of φ which can be simultaneously satisfied.

Theorem
The PCP theorem implies that there is an ε > 0 such that there is no polynomial time
(1 + ε)-approximation algorithm for Max 3SAT, unless P = NP .
Moreover, if Max 3SAT is hard to approximate within a factor of (1 + ε), then the
PCP theorem holds.

The theorem states that the PCP theorem and hardness of approximation of Max 3SAT are
equivalent.

Proof. Let us assume the PCP theorem holds. Let L ∈ PCP [log n, 1] be an NP-complete
problem. Let V be the (O(log n), q) = (γ log n, q) verifier for L, where q is a constant.

Now we reduce L to Max 3SAT which has a gap. Given an instance x of L, we construct a
3-conjunctive normal form (CNF) formula φx with m clauses such that for some ε such that
x ∈ L =⇒ φx is satisfiable and x /∈ L =⇒ no assignment satisfies more than (1 − ε)m
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clauses of φx.

Enumerate all random inputs R for the verifier V . The length of each random string is
O(log n),s o the number of such random inputs is 2γ log n = nγ = poly(n). For each R, V
chooses q positions iR1 , . . . , iRq and a Boolean function fR : {0, 1}q → {0, 1} and accepts if
and only if fR(wiR

1
, . . . , wiR

q
} = 1.

Simulate the computation fR of the verifier for different random inputs R and witnesses w
as a Boolean formula. A CNF formula has size 2q and converting to 3-CNF, we have size
q2q. For all R, nγq2q clauses.

If x ∈ L, then there is a witness w such that V (x,w) accepts for every random string R. φx

is satisfiable.

If x /∈ L, then the verifier returns NO for half of the random strings R. For each such string,
at least one of its clauses fail. Thus, at least ε = nγ/2

nγq2q = 1
2q2q of the clauses of φx fails.
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Part V

Online Algorithms
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Chapter 14

Online Algorithms and Paging

Definition: Competitive Analysis

Measures performance of an algorithm against the best algorithm that could see into
the future.
It is a worst-case analysis.

Given an input sequence s = s1, s2, . . . , sn of events. Let Copt(s) be the minimum cost that
any algorithm could achieve for s. Let CA(s) be the cost of the online algorithm on s.

Definition: Deterministic Competitive Ratio

A deterministic online algorithm A is k-competitive (has competitive ratio k), if for
all inputs s, we have

CA(s) ≤ kCopt(s) +O(1)

Definition: Randomized Competitive Ratio

A randomized online algorithm A is k-competitive (has competitive ratio k), if for all
inputs s, we have

E[CA(s)] ≤ kCopt(s)

14.1 Ski Rental Problem

Ski Rental Problem
Decide whether to buy all the equipment or rent the equipment at the resort.

Suppose buying costs $1000 dollars and renting at the resort cost $100 per day.

Buying or renting depends on how many times you go skiing. If you go skiing 9 times or
less, then it is better to rent. If you go skiing at least 11 times, then it is better to buy. If
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you go exactly 10 times, then it does not matter.

This is an online algorithm because the algorithm decides when to buy, knowing only that
we have gone skiing t times.

Any deterministic algorithm will rent t− 1 times and buy on the tth time. Thus, the cost is
100(t−1)+1000. If you go s < t times, then the cost is 100s and the deterministic algorithm
will buy at the beginning.

If t ≤ 9, then rent and when t = 10, we buy. This is a 1.9-competitive algorithm.

Analysis: If t ≤ 9, then the best strategy is to rent, so the cost is

CA

Copt

= 100t
100t = 1

If t ≥ 10, we buy at the 10th time, so cost is

CA

Copt

= 100(9) + 1000
1000 = 1.9

14.2 Dating Problem

Dating Problem

There are n people you are interested in dating and would like to date the best person.
Maximize the probability of dating the best person.

You could go out with all of them at the same time, but this is not possible. Thus, we have
to go with one at a time. This is an online setting.

Consider the following algorithm:

1. Assume you ranked all the people from 1, . . . , n.

2. Pick random order of n people: π.

3. Go out with n/e of the people and reject them.

4. After the first n/e dates, you will decide to settle if the person you found is better than
anyone else you have dated before.

The algorithm picks the best person with probability ≈ 1/e.

The more general algorithm is given a time t, go on t dates and from date t+ 1 onward, you
decide to settle with a person who is better than the previous ones.

Suppose we pick a person at time k, then

Pk = P [π(k) = 1 and pick person at time k]
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Then our final success probability will be P =
n∑

k>t

Pk.

If π(k) = 1, then 1− Pk is the probability we picked a person between [t + 1, k − 1], which
means someone in this range is better than the first t people.

Pk = P [π(k) = 1∩min{π(1), . . . , π(k−1)} ∈ {π(1), . . . , π(t)}] = (n− 1)!
n! · t

k − 1 = 1
n
· t

k − 1

We get
P =

n∑
k>t

1
n
· t

k − 1 = t

n

n∑
k>t

1
k − 1 ≈

t

n
· (lnn− ln t) = t

n
ln n
t

Optimizing the above and we set t = n/e, which gives 1/e probability.

To make it competitive

• Minimize the rank.

• The previous algorithm would either pick the best person or the last person, if π(k) = 1
is within the first t people.

• With constant probability, the rank of the last person is Ω(n), which is within the
bottom percentile.

• The expected rank is Ω(n).

This is not good. There is an algorithm that picks the person of average rank O(1), so
O(1)-competitive.

Based on computing time steps t0 ≤ t1 ≤ · · · and between time steps tk and tk+1, we will be
willing to pick the person who is ≤ k + 1 best from the current seen list.

14.3 Online Paging Problem

Computer memory is hierarchical: cache→ L1→ L2→ main memory. The memory can be
modelled in the following way:

• Each layer of memory is an array with a certain number of pages.

• A page stores the content of the item and its location in main memory.

• When we get a request, we first lookup in cache, then L1, then L2, then main memory.

• If the request is in the cache, we have a hit (which takes negligible time).

• Otherwise, we have a miss and need to fetch it in slower memory.
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• In the negligible extra time, we copy the new data and location to the cache.

• If the cache is full, we must delete an old entry before copying in the new data and
location.

Paging Problem

Which entry in the cache do we delete when the cache is full?

The cost function is the number of cache misses. Assume that there is only cache and main
memory.

14.3.1 Heuristics

Definition: Least Recently Used (LRU)

Delete page in cache whose most recent request happened furthest in the past.

Definition: Random
Delete random page.

Definition: First-In First-Out (FIFO)

Delete page that has been in cache the longest.

Definition: Least Frequently Used (LFU)

Delete page in cache which has requested least often.

• LRU is k-competitive.

• Random is k-competitive.

• FIFO is k-competitive.

• LFU is not competitive.

Theorem
For a cache of size k, LRU is k-competitive.

Upper bound: divide input sequence into phases. The first phase starts immediately after
the algorithm first faults and ends right after the algorithm faults k more times. Second
phase starts after first phase and ends after k more faults.
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We prove the optimal algorithm faults at least once per phase. This will give CA ≤ kCopt.
Proof. Denote s(i) be the ith phase. Then

CLRU(s) =
∑
i≥1

CLRU(s(i)) ≤
∑
i≥1

kCopt(s(i)) = kCopt(s)

Analysis: Same page faulted twice in one phase. Let s1, . . . , st be a phase and p = s1 = st.
In order for page p to be faulted twice, then at least k − 1 of the pages in cache have to
be queried in s2, . . . , st−1, then p would be least recently used so on st, p faults. Thus, you
would need to query at least k+1 distinct elements. By the pigeonhole principle, OPT must
fault at least once.

Each page faulted once in a phase. Let s1, . . . , st be a phase. Let page p comes before s1.
In the beginning of each phase, cache of OPT and cache of A must have p. Since OPT and
A has a common page, then OPT must have faulted, so t = k distinct pages in the phase.
Since there are k− 1 spots (not p) and we have k distinct pages, by pigeonhole principle, we
have 1 fault.

Theorem
Any deterministic algorithm for paging with k pages is at least k-competitive.

Proof. Proof by trolling. Use k + 1 pages and let A be paging algorithm. At each step,
request a page that A does not have. A faults every single time.

The offline algorithm: on a cache miss, delete page which is requested furthest in the future.
When the offline algorithm deletes a page, the next delete happens after at least k steps.
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Chapter 15

Multiplicative Weights Update
Method

Learning From Experts: We want to invest money on the stock market, and our objective
is to get rich, but we do not know much about stock markets. We also have access to n
experts who know about the stock market.

• Each morning, before the market opens, experts predict whether the price of a stock
will go up or down.

• By the time the market closes, we can check who was right or wrong. Experts who
were right earn 1 dollar and those who were wrong lose 1 dollar.

If we follow the good expert, then we would make a lot of money. We want to to do as well
as the best expert.

If we are trading for T days, guessing correctly in expectation is T/2 times and it also is
optimal.

Say we knew that there was one expert which will be right every time. At each trading day,
take the majority vote of the opinions of the experts. If we made the right trade, do nothing.
If the trade was bade, at the end of the trading day, discard all experts that made a mistake
that day.

Every time we made a bad trade, we discard half of the experts. After log n bad trades, only
the expert who is always right will remain. Total money we made is ≥ T − log n and total
money best expert made is T .

15.1 Multiplicative Weights Update Algorithm

Whenever an expert makes a mistake, consider their opinions with less importance. Let
wt : [n] → R+ be a function from each expert to the nonnegative reals and 0 < ε < 1/2.
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wt(i) is the weight of expert i at time t.

In the beginning, every expert has weight w1(i) = 1. If an expert makes a mistake on day t,
make wt+1(i) = wt(i) · (1− ε). Each trading day, choose to trade based on weighted majority
of the decisions of the experts.

Multiplicative Weights Update Algorithm

1. Setup: a binary decision and we have access to n experts, index by [n]. At each
time step t, expert takes decision dt(i) ∈ {−1,+1} and a parameter 0 < ε < 1/2.

2. wt : [n] → R+ be weight function. In the beginning, every expert has weight
w1(i) = 1.

3. At each time step t = 1, . . . , T :

(a) Make decision based on weighted majority
+1 if

n∑
i=1

wt(i) · dt(i) ≥ 0

−1 otherwise

(b) If an expert makes a mistake at time t, make

wt+1(i) = wt(i) · (1− ε)

15.2 Analysis

Theorem (Multiplicative Weights Update)

Let Mt be the number of mistakes that our algorithm makes until time t, and let mt(i)
be the number of mistakes that expert i made until time t.
Then, for any expert i ∈ [n], we have

Mt ≤ 2(1 + ε)mt(i) + 2 log n
ε

Proof. We have the potential function

Φt =
n∑

i=1
wt(i)

Intuition: If we make a mistake, Φt+1 decreases by a multiplicative factor with respect to Φt.
Φt is monotonically decreasing. Initially Φ1 = n and Φt ≥ 0 for all t. If we made a mistake,
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at least half the weight was on the wrong answer. Thus

Φt+1 =
∑

i right
wt(i) + (1− ε) ·

∑
j wrong

wt(j) = Φt − ε
∑

i wrong
wt(i)︸ ︷︷ ︸

≥Φt/2

≤
(

1− ε

2

)
Φt

and also Φt =
n∑

i=1
wt(i) ≥ wt(i) = (1− ε)mt(i),

(1− ε)mt(i)Φt ≤ Φ1

(
1− ε

2

)Mt

= n
(

1− ε

2

)Mt

Then we get
mt(i) log(1− ε) ≤ log n+Mt log

(
1− ε

2

)
And for x ∈ (0, 1/2),

−x− x2 ≤ log(1− x) ≤ −x

(−ε− ε2)mt(i) ≤ log n−Mt
ε

2 =⇒ Mt ≤
2 log n
ε

+ 2(1 + ε)mt(i)

Multiplicative Weights Update – General

1. Setup: have access to n experts, index by [n]. At each time step t, each expert
will guess a value mt(i) ∈ [−w,+w] (mistake is +w). Cost of ith expert answer
at time t is mt(i). Parameter 0 < ε < 1/2.

2. pt : [n] → R+ be weight function (normalized to sum to 1). pt(i) is the weight
of expert i at time t and in the beginning, every expert has weight p1(i) = 1/n.
The total cost is ∑t ⟨pt,mt⟩.
This implies the update rule is

wt+1 =
(

1− ε · mt(i)
w

)
wt(i), pt+1(i) = wt+1(i)

Φt+1

3. Minimize total cost:
T∑

t=1
⟨pt,mt⟩.

Theorem (Multiplicative Weights Update)

With the setup, after T rounds, for any expert i ∈ [n], we have

T∑
t=1
⟨pt,mt⟩ ≤

T∑
t=1

mt(i) + ε
T∑

t=1
|mt(i)|+

w lnn
ε
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15.3 Solving Linear Programs

Assume we are given a feasibility LP Ax ≥ b, x ≥ 0, the optimization version reduces to
feasibility version by binary search.

We can think of each inequality Aix ≥ bi as an expert. Each constraint would like to be the
hardest constraint, i.e. the one that is violated the most by current proposed solution x(t).
Precisely, the cost of the ith constraint Aix− bi.

Definition: Oracle

Let A ∈ Rm×n. O is an oracle of width w for A if given a linear constraint

pAx ≥ pb, x ≥ 0

O(p) will return y ≥ 0 such that

|Aiy − bi| ≤ w, ∀i ∈ [m]

We would like to maximize
min

1≤i≤m
Aix− bi

The multiplicative weights update provides a way to combine all constraints into one con-
straint. It finds a probability distribution over experts (normalized weights) which in our
case are inequalities. Thus, we only have to deal with the constraint p(t)Ax ≥ p(t)b, where

p(t) = 1∑
i wt(i)

· (wt(1), . . . , wt(n))

MWU shows over the long run, the total violation of weighted constraints will be close to
total violation of worst violated constraint.

MWU shows that over the long run, for any inequality i ∈ [m]:

T∑
t=1

〈
p(t), Ax(t) − b

〉
<
w logm

ε
+

T∑
t=1

(Aix
(t) − bi) + ε

T∑
t=1

∣∣∣Aix
(t) − bi

∣∣∣
We can return the solution

z = 1
T

T∑
t=1

x(t)

Plug it back in, we have
−εw − w logm

Tε
≤ Aiz − bi

If we set T = w2 log m
δ2 and ε = δ

2w
, and the above becomes Aiz − bi ≥ −δ.
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Theorem (Multiplicative Weights Update)

Let δ > 0 and suppose we are given an oracle with weight w for A. The MWU
algorithm either finds a solution y ≥ 0 such that

Aiy ≥ bi − δ, ∀i ∈ [m]

or concludes that the system is infeasible (and outputs a dual solution).
The algorithm makes O(w2 logm/δ2) oracle calls.

100



Chapter 16

Streaming

Definition: Basic Data Stream Model
In the data stream model:

• A stream of elements a1, . . . , aN each from a known alphabet Σ.
Each element of Σ takes b bits to represent.

• Basic operations (comparison, arithmetic, bitwise) take Θ(1) time.

• Single or small number of passes over data.

• Bounded storage (typically logc(N) for c = O(1) or Nα for some 0 < α < 1).

• Allowed to use randomness.

• Usually want approximate answers.

Our goal is to minimize space complexity and processing time.

Examples of streaming problems:

Sum of Elements

Input stream: a1, . . . , aN be integers from the set [−2b + 1, 2b − 1].
Task: maintain the current sum of elements seen so far.

Median

Input stream: a1, . . . , aN be integers from the set [−2b + 1, 2b − 1].
Task: maintain the current median of elements seen so far.
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16.1 Majority Element

Heavy hitters with ε = 1/2.

At time t, we will maintain a set St which contains the element that has appeared at least
N
2 times, if any.

1: Setup: heavy hitters with ε = 1
2

2: S0 = ∅
3: c = 0
4: while at arrives do
5: if c = 0 then
6: St = {at}
7: c = 1
8: else
9: if at ∈ St−1 then

10: c = c+ 1
11: else
12: c = c− 1 and discard at

13: return Element in SN

16.1.1 Analysis

If there is no majority element, we could still output a low hitter. Every time we discard a
copy of the majority element, we throw away a different element.

For example, consider the stream 3, 1, 2, 1, 1, the majority element appears more than half
the time, so we cannot throw away all the majority elements.

Used O(b) +O(logN) space; the set St which has one element and the counter is logN .

16.2 Heavy Hitters

Heavy Hitters

Input stream: a1, . . . , aN be integers from the set [−2b + 1, 2b − 1], ε > 0.
Task: maintain set of elements that contains elements that have appeared at least
ε-fraction of the time (heavy hitters).
Constraint: allowed to output false positives (low hitters), but not allowed to miss
any heavy hitter.

102



1: k =
⌈

1
ε

⌉
− 1

2: T = array of length k where T [i] can hold x ∈ Σ = [−2b + 1, 2b − 1]
3: C = array of length k where C[i] can hold a nonnegative integer
4: T [i] = NaN
5: C[i] = 0 for all i ∈ [k]
6: while at arrives do
7: if ∃j ∈ [k] such that at = T [j] then
8: C[j] = C[j] + 1
9: else if ∃j ∈ [k] such that C[j] = 0 then

10: T [j] = at

11: C[j] = 1
12: else
13: C[j] = C[j]− 1 for all j ∈ [k]
14: Discard at

15: return T,C

16.2.1 Analysis

For each element e ∈ Σ, let est(e) =
C[j] if e = T [j]

0 otherwise
.

Lemma

Let count(e) be the number of occurrences of e in stream up to time N .

0 ≤ count(e)− est(e) ≤ N

k + 1 ≤ εN

Proof. count(e) ≥ est(e) since we never increase C[j] for e unless we see e. If we do not
increase est(e) by 1 when we see an update to e, then we decrement k counters and discard
current update to e. So we drop k + 1 distinct stream updates, but there are N updates, so
we do not increase est(e) by 1 (when we should) at most N

k+1 ≤ εN times.

At any time N , all heavy hitters e in T . For an ε-heavy hitter e, we have count(e) > εN .
est(e) ≥ count(e)− εN > 0 so est(e) > 0 implying e ∈ T .

The space used is O(k(log Σ + logN)) = O
(

1
ε
· (b+ logN)

)
bits.

16.3 Distinct Elements

Distinct Elements

Input stream: a1, . . . , aN be integers from the set [0,m− 1], m = 2b.
Task: maintain current number of distinct elements D seen so far.
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We can use a strongly 2-universal hash function h : [0,m− 1]→ [0,m3]. We have seen with
high probability, there are no collisions.

Suppose there are D distinct elements b1, . . . , bD, if the D hash values h(b1), . . . , h(bD) are
evenly distributed in [0,m3], then the tth smallest hash value should be close to tm3

D
. If we

know that tth smallest value is T , then T ≈ tm3

D
implying D ≈ tm3

T
.

1: Choose a random hash function h from a strongly 2-universal hash family
2: for each item ai in the stream do
3: Compute h(ai)
4: Update list that stores t smallest hash values
5: After all data has been read, let T be tth smallest value in data stream
6: return Y = tm3

T

16.3.1 Analysis

We not store the whole hash table, only store hash function h and k numbers.

Theorem

Setting k = O(1/ε2), Y = tm3

T
satisfies

(1− ε)D ≤ Y ≤ (1 + ε)D

with constant probability.

We want to upper bound P [Y > (1 + ε) ·D].

Y > (1 + ε)D =⇒ T <
tm3

(1 + ε)D ≤
(1− ε/2)tm3

D

There are at least t hash values are smaller than the quantity above.

Let the random variable

Xi =
1 if h(bi) ≤ (1−ε/2)tm3

D

0 otherwise

So
E[Xi] = P

[
h(bi) ≤

(1− ε/2)tm3

D

]
= (1− ε/2)t

D

where each h(bi) is uniformly at random in [0,m3]. If there are D distinct elements,

E
[
# elements with hash value ≤ (1− ε/2)tm3

D

]
≤ t(1− ε/2)
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but we have assumed we have at least t such elements. We show this cannot happen with

high probability. If there are D distinct elements, let X =
D∑

i=1
Xi.

E[X] ≤ t(1− ε/2)

The probability we will see ≥ t elements smaller than (1−ε/2)tm3

D
. V ar[X] =

D∑
i=1

V ar[Xi] since

pairwise independence and V ar[Xi] = E[X2
i ]− E[Xi]2 ≤ E[Xi]. By Chebyshev’s inequality

P [X > t] = P [X > t · (1− ε/2) + ε · t/2]
≤ P [|X − E[X]| > ε · t/2]

≤ 4V ar[X]
ε2t2

≤ 4
ε2t

The lower bound P [Y < (1− ε) ·D] is similar. So

P [Y > (1 + ε) ·D] ≤ 4
ε2t

P [Y < (1− ε) ·D] ≤ 4
ε2t

Setting t = 24/ε2 gives

P [(1− ε) ·D ≤ Y ≤ (1 + ε) ·D] ≥ 1− 8
ε2t

= 2
3

The total space used is O
(

1
ε2 logm

)
bits since we stored O(1/ε2) hash values each of logm

bits and the hash function only requires O(logm) bits to store.

The runtime per operation is O(logm+ 1/ε2) steps since we compute hash in O(logm) time
and we keep track of O(1/ε2) elements and need to update the list, this takes O(1/ε2) time.
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16.4 Weighted Heavy Hitters

Weighted Heavy Hitters

Input stream: (a1, w1), . . . , (aN , wN) tuples of integers from Σ = [−2b + 1, 2b − 1],
parameter q ∈ N.
Total weight

Q =
N∑

t=1
wt

Total weight of e ∈ Σ
Q(e) =

∑
t:at=e

wt

Task: find all elements e such that Q(e) ≥ q.
Constraint: allowed to output low hitters, but now allowed to miss any heavy hitter.

Setup:

• All heavy hitters reported.

• If Q(e) ≤ q − εQ, then e is reported with probability at most δ.

• k, ℓ are parameters to be chosen.

• Pick k hash functions h1, . . . , hk where hi : Σ→ [0, ℓ− 1].

• Main k · ℓ counters Ci,j where each Ci,j adds the weight of items that are mapped to
jth entry by the ith hash function.
Start with Ci,j = 0 for all 1 ≤ i ≤ k, 1 ≤ j ≤ ℓ.

1: Given (at, wt) for each 1 ≤ i ≤ k, set Ci,hi(at) = Ci,hi(at) + wt

2: At the end (need to do a second pass), report all elements e with

min
1≤i≤k

Ci,hi(e) ≥ q

16.4.1 Analysis

Heavy hitters are always reported as all their counters are large. Need to show if e is not a
heavy hitter, with high probability, we will have one counter Ci,hi(e) < q.

If Q(e) ≤ q − εQ and e is reported, Ci,hi(e) ≥ q. The contribution from e is Q(e) ≤ q − εQ,
so the other elements that map to hi(e) must have contributed ≥ εQ.
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Let Zi be the value of Ci,hi(e) that was added by other elements. hi is from a 2-universal
hash family, so the probability that another element f is mapped to hi(e) is ≤ 1

ℓ
. Thus,

E[Zi] ≤ Q
ℓ
. By Markov’s inequality

P [Zi ≥ εQ] ≤ E[Z]
εQ
≤ 1
εℓ

Since the hash functions hi are chosen independently,

P
[

min
1≤i≤k

Zi ≥ εQ
]
≤
( 1
εℓ

)k

Setting ℓ = 2/ε and k = log δ, we get the probability ≤ δ.

The space for counters is O
(

1
ε

log 1
δ

)
. The space to store all hash functions and evaluation

time is O(kℓ).
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Part VI

Symbolic Computation
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Chapter 17

Matrix Multiplication & Exponent of
Linear Algebra

17.1 Matrix Multiplication

Matrix Multiplication

Input: matrices A,B ∈ Fn×n.
Output: product C = AB.

Naive algorithm computes n matrix vector multiplications, which results in O(n3) runtime.

Strassen’s Algorithm

Suppose n = 2k. Let A,B,C ∈ Fn×n such that C = AB. Divide them into blocks of
size n

2 :

A =
[
A11 A12
A21 A22

]
, B =

[
B11 B12
B21 B22

]
, C =

[
C11 C12
C21 C22

]
Define the following matrices:

S1 = A21 + A22, S2 = S1 − A11, S3 = A11 − A21, S4 = A12 − S2

T1 = B12 −B11, T2 = B22 − T1, T3 = B22 −B12, T4 = T2 −B21

Compute the 7 products:

P1 = A11B11, P2 = A12B21, P3 = S4B22, P4 = A22T4, P5 = S1T1, P6 = S2T2, P7 = S3T3

C =
[
C11 C12
C21 C22

]
=
[

P1 + P2 P1 + P3 + P5 + P6
P1 − P4 + P6 + P7 P1 + P5 + P6 + P7

]

To compute AB = C, there were 8 additions for Si, Ti, 7 multiplications for Pi, and 10
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additions for Cij. Therefore, the recurrence is

MM(n) ≤ 7 ·MM(n/2) + 18c(n/2)2 =⇒ MM(2k) ≤ 7 ·MM(2k−1) + 18c · 22k−2

Use Master theorem to get MM(n) = O(nlog 7) ≈ O(n2.807).

17.1.1 Matrix Multiplication Exponent

Definition: Matrix Multiplication Exponent

ω or ωmult for matrix multiplication exponent.
If an algorithm for n × n matrix multiplication has runtime O(nα), then ω ≤ α. For
any ε > 0, there is an algorithm for n × n matrix multiplication running in time
O(nω+ε).

As of today, 2 ≤ ω < 2.373. Finding right ω is an open question in computer science.

We can similarly define ωP for a problem P .

17.2 Matrix Inversion

Matrix inversion is at least as hard as matrix multiplication. This can proven by reduction;
if we can invert matrices quickly, then we can multiply two matrices quickly.

Suppose we had an algorithm to invert matrices. Consider trying to multiply A and B.

Define M =

I A 0
0 I B
0 0 I

. Use the algorithm to find M−1 =

I −A AB
0 I −B
0 0 I

.

So if we could invert in time O(nα), then we can multiply two matrices in time O(nα).

Matrix multiplication is at least as hard as matrix inversion.

Suppose we have an algorithm that performs matrix multiplication. Let n = 2k, divide the
matrix M into blocks of size n

2 , i.e.

M =
[
A B
C D

]

The inverse of M is
M−1 =

[
I −A−1BS−1

0 S−1

]
·
[
A−1 0
−CA−1 I

]
where S := D − CA−1B is the Schur complement and assuming A and S are invertible.
Thus, to invert M , we need to invert A, compute S := D − CA−1B, invert S, and then
perform a constant number of multiplications.
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The recurrence relation for this is

I(n) ≤ 2 · I(n/2) + C · (n/2)ω

We know that 2 ≤ ω < 3, then

I(2k) ≤ 2 · I(2k−1) + C · 2ω(k−1)

Thus,

I(n) = I(2k) ≤ 2k · I(1) + C
k−1∑
i=1

2ωi

≤ C ′
(

2k + 2ωk − 1
2ω − 1

)
≤ C ′′ · 2ωk

= C ′′nω

17.3 Determinant

Definition: Determinant

Given a matrix M ∈ Fn×n,

det(M) =
∑

σ∈Sn

(−1)σ ·
n∏

i=1
Miσ(i)

Definition: Minor

Given a matrix M ∈ Fn×n and (i, j) ∈ [n]2, the (i, j)-minor of M , M (i,j), is obtained
by removing the ith row and jth column of M .

Definition: Laplace Expansion of Determinant

Given a row i,
det(M) =

n∑
j=1

(−1)i+jMij · det(M (i,j))

Proposition (Minor Determinant With Derivative of Determinant)

det(M (i,j)) = (−1)i+j∂i,j det(M)

Definition: Adjugate Matrix

The adjugate matrix N ∈ Fn×n of M is

Nij = (−1)i+j det(M (j,i))
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Proposition

Let M,N ∈ Fn×n where N is the adjugate matrix of M , then

MN = det(M) · I or M−1 = 1
det(M) ·N

Since entries of the adjugate matrix (determinants of minors) are related to derivatives of
the determinant of M , if we could compute the determinant and all its partial derivatives,
then we can compute the adjugate and the inverse.

Suppose we have an algorithm which computes the determinant in O(nα) operations. Then
we can compute the determinant and all its partial derivatives in O(nα) operations and
compute the inverse by computing

det(M (i,j))
det(M)

17.4 Partial Derivatives

Definition: Algebraic Circuit in Ring R

A directed acyclic graph Φ with

• input gates labeled by variables x1, . . . , xn or elements of R.

• other gates labeled +,×,÷.

• gates compute polynomial.

Definition: Size of Algebraic Circuit

Number of edges in the circuit, denoted S(Φ).

Definition: Partial Derivative

Let f(x1, . . . , xn) ∈ F[x1, . . . , xn], then

∂ix
d
j =

dx
d−1
j if i = j

0 otherwise

Theorem
If f can be computed using L operations of +,−,×, then we can compute all partial
derivatives simultaneously using 4L operations.

Computing partial derivatives are ubiquitous in computational tasks such as gradient descent
methods or Newton iterations.
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Definition: Chain Rule

∂if(g1, . . . , gm) =
m∑

j=1
(∂if)(g1, . . . , gm) · ∂igj

Chain rule has 2m partial derivatives, but if each function has m being constant, then the
chain rule is cheap. Many of partial derivatives are zero or have already been computed. In
backpropagation, we have to calculate partial derivatives in reverse.

Consider P1 = x1 +x2, P2 = x1 +x3, P3 = P1P2, P4 = x4P3. Computing all partial derivatives
per operation directly is slow.

Replace P1 = y, so Q2 = x1 + x3, Q3 = yQ2, Q4 = x4Q3. Consider the algebraic circuit
computing all partial derivatives of the circuit. We can transform it into one that computes
all partial derivatives of P4 by using chain rule. Note that

Q4(x1, x2, x3, x4, y = P1) = P4

By chain rule,

∂iP4 =
4∑

j=1
(∂jQ4)(x1, x2, x3, x4, P1) · (∂ixj) + (∂yQ4)(x1, x2, x3, x4, P1) · (∂iP1)

= (∂jQ4)(x1, x2, x3, x4, P1) · 1 + (∂yQ4)(x1, x2, x3, x4, P1) · (∂iP1)

P1 depends on at most 2 variables. By induction, we know a circuit of size ≤ 4(L− 1) which
computes all the ∂iQ4. P1 is of the form αxi + βxj, xI, xj, αxi + β. We can compute P1 and
its derivatives with at most 4 operations. So the circuit computes all partial derivatives of
P4 with size

≤ 4(L− 1) + 4 = 4L
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Part VII

Cryptography
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Chapter 18

Zero-Knowledge Proofs

In cryptography, we want to communicate with other people/entities, which we may not
trust. We may also not trust the channel of communication. Someone may eavesdrop
messages, messages could be corrupted or someone could try to impersonate.

Situation: Alice has all her files encrypted. Bob requests the content of one of Alice’s files.
Alice can send the decrypted file to Bob, but Bob has no way of knowing that this message
comes from Alice. Alice could prove to Bob it is the right file by sending the encryption key.
But then Bob has access to her entire database. We want a way for Alice to convince Bob
that she gave the right file without giving any more knowledge beyond that she gave the
right file.

Definition: Zero-Knowledge Proofs

Proofs in which the verifier gains no knowledge beyond the validity of the assertion.

Knowledge has to do with your computational ability. If you could have found the answer
without help, then you gained no knowledge.

If Bob asks Alice whether a graph G is Eulerian, Bob gains no knowledge since he could
have computed it by himself (using Euler’s theorem). However, if Bob asks Alice if G has
a Hamiltonian cycle, then Bob gains knowledge. (If P ̸= NP , then Bob could not compute
it.)

In either case, Alice conveyed information.

Definition: Knowledge

Related to computational difficulty and about publicly known objects.

One gains knowledge when one obtains something one could not compute before.

Definition: Information
Unrelated to computational difficulty and about partially known objects.
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One gains information when one obtains something one could not access before.

18.1 Classical Proofs

A claim C is given and a prover P writes down a proof that C is correct. Prover P sends proof
to verifier V . The verifier has procedures (axioms and derivation rules) to check validity of
proof. Verifier will accept or reject based on rules.

This is a one-way communication scheme. The verifier does not trust the prover. The proofs
are not interactive.

18.1.1 NP

A claim C := x ∈ L is given. Prover P writes down a proof/witness w that x ∈ L. Prover
sends w to verifier V . The verifier has a deterministic, polynomial time algorithm to check
validity of w. Verifier accepts if and only if V (x,w) = 1.

18.1.2 Factoring

A claim C := N , a product of two primes, is given. Prover P writes down a proof that there
are two primes p, q such that N = pq. P sends (p, q) to verifier V . V computes pq and checks
p, q are prime using a deterministic, polynomial time algorithm. Verifier accepts if and only
if p, q are prime and N = pq.

18.1.3 Graph Isomorphism

A claim C := G0, G1 is given, where G0, G1 are isomorphic. Prover P writes down an
isomorphism ρ such that ρ(G0) = G1. P sends rho to verifier V . V checks that ρ is a
permutation of vertices and ρ(G0) = G1 using a deterministic, polynomial time algorithm.
Verifier accepts if and only if rho is a permutation of vertices and ρ(G0) = G1.

18.2 Zero-Knowledge Proofs

The proofs will be interactive, instead of one-way and the verifier is allowed private random-
ness.
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18.2.1 Graph Isomorphism

A claim C := G0, G1 that are isomorphic. Prover P produces a random graph H for which
it can an isomorphism ρ0, ρ1 from G0 and G1 to H respectively.

This is possible if and only if G0, G1 are isomorphic.

The verifier picks a random bit b ∈ {0, 1}. The prover gives isomorphism ρb. The verifier
checks that ρb(H) = Gb. The verifier will not learn the isomorphism between G0 and G1.

If the claim is true, then the prover can always give an isomorphism. If the claim is false,
then we can catch a bad proof with probability 1

2 . By repeating the protocol, we can amplify
this probability.

We can use simulation to model that the verifier does not gain knowledge. The key idea is
if the claim is true, then the verifier’s view of the proof could have been simulated by the
verifier alone.

Simulation: The verifier privately produces a random permutation ρ and a bit b and outputs
H = ρ(Gb). Verifier then picks bit b from previous step and gives isomorphism ρ−1. The
verifier checks that ρ−1(H) = Gb. V gained no new information.

Definition: Perfect Zero Knowledge – Strict

A valid proof system (P, V ) is perfect zero-knowledge for language L if for every
polynomial time, randomized verifier V ∗, there is a randomized algorithm M∗ such
that for every x ∈ L, the following random variables are identically distributed:

• ⟨P, V ∗⟩ (x): output of interaction between prover P and verifier V ∗ on input x.

• M∗(x): output of algorithm M∗ (simulation) on input x.

The previous definition is a bit too strict to be useful. We allow the simulator to fail with
small probability (by outputting ⊥).

Definition: Perfect Zero Knowledge

A valid proof system (P, V ) is perfect zero-knowledge for language L if for every
polynomial time, randomized verifier V ∗, there is a randomized algorithm M∗ such
that for every x ∈ L, the following hold:

1. With probability ≤ 1
2 , M∗(x) =⊥.

2. Conditioned on M∗(x) ̸=⊥, the following variables are identically distributed:

• ⟨P, V ∗⟩ (x): output of interaction between prover P and verifier V ∗ on input
x.

• M∗(x): output of algorithm M∗ (simulation) on input x.

Simulation: Produces a random permutation ρ and outputs H = ρ(G0). Simulator picks
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random bit b and if b ̸= 0, then output ⊥. Otherwise, the simulator gives isomorphism ρ−1

and the simulator checks that ρ−1(H) = G0. This is perfect zero knowledge for prover P .
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Part VIII

Distributed Computing
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Chapter 19

Distributed Algorithms

Definition: Distributed Algorithms

Algorithms which run on a network or multiprocessors within a computer which share
memory.

Think of processors as vertices of a directed graph. Each processor has its own memory.
Each processor can send messages to its outgoing neighbours. Processors communicate in
synchronous rounds. There may or may not have failures.

Definition: Synchronous Model

Σ ∪ {⊥} is the message alphabet plus the special symbol ⊥. For each vertex i ∈ [n],
a processor consists of

• Si: non-empty set of states

• σi: start state

• µi : Si × outi → Σ ∪ {⊥}: messages function

• τi : Si × (Σ ∪ {⊥})ini → Si: transition function

Definition: Complexity Measure

Number of rounds/total data communicated to solve problem.

Assume processors have unlimited internal resources and that each processor is deterministic.
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19.1 Leader Election

Leader Election problem

Input: network of processors.
Output: want to distinguish exactly one processor as the leader.

Consider when the processors are a ring network with bidirectional communication and they
are numbered clockwise. All processors are identical and deterministic, so it is impossible to
elect a leader. To show this, we look at execution and check all processors will be at identical
states.

Leader Election Algorithm

Assume each processor has a unique ID (UID) and they do not know the size of the
network. Idea is for each processor to send its UID in a message, relayed around the
ring. When a processor receives a UID, compare it with its own.

1. If it is bigger, pass it on.

2. If is is smaller, discard.

3. If it is equal, declare itself leader.

4. Leader notifies every processor by relaying in network.

At the end, elect the processor with largest UID to be the leader.

After n rounds, the processor with maximum UID will declare itself leader. The number of
rounds is O(n) and communication takes O(n2). We can reduce communication to O(n log n)
by successively doubling.

19.2 Consensus Problem

Consensus Problem

Input: each processor has one bit of input: 1 (attack) or 0 (don’t attack).
Output: all should have same decision bit b satisfying weak validity (if at least one
processor has bit 0, then 0 is only allowed decision).

Definition: Stopping Failure

All processors are good, but some may not be able to communicate (crashed).

Definition: Byzantine Failure

Some processors are malicious.
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Byzantine Consensus Problem

Input: each processor has one bit of input: 1 (attack) or 0 (don’t attack). Faulty
processors can behave arbitrarily.
Output: all non-faulty processors should terminate and have same decision bit b
(agreement) and if all non-faulty processors start with bit a, then b must be equal to
a (weak validity).

Complexity measures: number of rounds and communication (messages in bits).

19.2.1 Complete Graph Byzantine Consensus

Assume all vertices can talk to any other vertex.

First attempt: Send our value to other non-faulty vertices, then take majority.

Let n = 3, f = 1, p1 = 1, p2 = 0, p3 = 0. If p3 sends 1 to p1, then p1 gets 101 and decides 1.
But if p3 sends 0 to p2, then p2 gets 100 and decides 0. This violates the agreement property.

Instead, make all vertices gossip, i.e. each vertex will keep track of what each vertex has told
another. At each round, each vertex broadcasts its knowledge. After a number of rounds,
everyone will make a decision.

Consider a bad example on a complete graph on 3 vertices v1, v2, v3 with 1 faulty vertex.
Consider the following scenarios.

Scenario 1: v1, v2 good with value 1, v3 faulty with value 0.

Round 1: All vertices truthful.

Round 2: v3 lies to v1 saying v2 said 0. All other communications are truthful.

Round 3: v1, v2 must decide 1.

Scenario 2: v2, v3 good with value 0, v1 faulty with value 1.

Round 1: All vertices truthful.

Round 2: v1 lies to v3 saying v2 said 1. All other communications are truthful.

Round 3: v2, v3 must decide 0.

Scenario 3: v1, v3 good with values 1, 0 respectively, v2 faulty with value 0.

Round 1: v2 tells v1 its value is 1 and tells v3 its value is 0.

Round 2: All truthful.
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Scenarios 1 and 3 are identical to v1, so it must return 1 by weak validity. Scenarios 2 and
3 are identical to v3, so it must return 0 by weak validity. This contradicts agreement in
Scenario 3.

19.2.2 Exponential Information Gathering Algorithm

Assume n > 3f where n = |V | and f is the number of faulty vertices. We want to perfectly
gossip.

If n ≤ 3f , then no algorithm can reach consensus.

Definition: Exponential Information Gathering (EIG) Tree

A tree Tn,f where the depth is f + 1 and each tree node at level k + 1 is labeled by
string i1i2 · · · ik (ia ̸= ib). Node i1 · · · ik wil store value v if the following happens:
ik told you that ik−1 told ik that ik−2 told ik−1 . . . that i1 told i2 that its initial value
was v.

EIG Algorithm

1. Each vertex has its own EIG tree Tn,f with root labeled with its own value.

2. Relay messages for f + 1 rounds.

• At round r, each vertex sends the values of level r of its EIG tree.
• Each vertex decorates values of its (r+1)th level with values from messages.

3. After f+1 rounds, redecorate tree bottom-up, taking strict majority of children.
If none, set value of tree node to ⊥.

4. Output label on the root of EIG tree after redecoration.

Example: n = 4, f = 1. Initially p3 is faulty and initial values are p1 = p2 = 1, p3 = p4 = 0.

Round 1: p3 lies to p2 and p4.

Round 2: p3 lies to p2 about p1 and lies to p1 about p2.

T1, T2, T4 will output 1.

19.2.3 Analysis

Lemma (Consistency of Non-Faulty Messages)

If i, j, k are non-faulty, then Ti(x) = Tj(x) whenever label x ends with k.
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Lemma (Consistency of Upwards Relabeling)

If label x ends with non-faulty process, then for any two non-faulty processors i, j, the
new values of Ti(x) and Tj(x) are the same.

Proof. Base case: if x is the label of leaf, the consistency of non-faulty messages lemma
handles this.

Induction: |x| = t ≤ f .

By induction, if ℓ is a non-faulty element, the new value of Ti(x ◦ ℓ) is the same for any
i ∈ [n]. So label x has same labeled children across trees, if xℓ is honest. The number of
children of x is n− t > 3f − f = 2f . Since at most f are faulty, by taking the majority, we
get new values Ti(x) = Tj(x).

Termination: After f + 1 rounds, all of them will decide.

Proof. Every label x which has no faulty processor is able to update its value.

Validity: If all vertices start with b, then each label x with no faulty processor will be updated
to b.

Proof. Analogous to the proof of the lemma.

Agreement: All vertices must agree on the same value.

Proof. By first lemma, all values in the leaves x are consistent across processors so long as
x ends on a non-faulty process. By the second lemma, the majority will cause all values in
nodes from level r ending in non-faulty nodes to be the same across processors. Induction
and n > 3f ensure that labels in level 1 will look the same on non-faulty nodes implying
agreement.
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